成都市地表水中三氯生和避蚊胺的浓度分析及生态风险

孙静, 沈华泾, 柯紫妍, 方淑红, 印红玲. 成都市地表水中三氯生和避蚊胺的浓度分析及生态风险[J]. 生态毒理学报, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002
引用本文: 孙静, 沈华泾, 柯紫妍, 方淑红, 印红玲. 成都市地表水中三氯生和避蚊胺的浓度分析及生态风险[J]. 生态毒理学报, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002
Sun Jing, Shen Huajing, Ke Ziyan, Fang Shuhong, Yin Hongling. Concentration Analysis and Ecological Risk of Triclosan and Diethyltoluamide in Surface Water of Chengdu, China[J]. Asian journal of ecotoxicology, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002
Citation: Sun Jing, Shen Huajing, Ke Ziyan, Fang Shuhong, Yin Hongling. Concentration Analysis and Ecological Risk of Triclosan and Diethyltoluamide in Surface Water of Chengdu, China[J]. Asian journal of ecotoxicology, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002

成都市地表水中三氯生和避蚊胺的浓度分析及生态风险

    作者简介: 孙静(1986—),女,博士,讲师,研究方向为水环境化学、新型污染物的分析及生态风险评价,E-mail:sunj198611@163.com
    通讯作者: 孙静, E-mail: sunj198611@163.com
  • 基金项目:

    四川省教育厅基金资助项目(2017Z060);成都信息工程大学校引进人才科研启动经费(KYTZ201740);成都信息工程大学校内项目(CRF201609)

  • 中图分类号: X171.5

Concentration Analysis and Ecological Risk of Triclosan and Diethyltoluamide in Surface Water of Chengdu, China

    Corresponding author: Sun Jing, sunj198611@163.com
  • Fund Project:
  • 摘要: 为探究成都市地表水中三氯生和避蚊胺的浓度水平和潜在的生态风险,在2017年5月采集并分析了成都市主城区和都江堰地区水体中共20个样品。使用固相萃取富集,N-(特丁基二甲基硅)-N-甲基三氟乙酰胺衍生化,气相色谱质谱法测定了三氯生、甲基三氯生和避蚊胺在成都市地表水中的浓度。搜集并筛选出三氯生和避蚊胺对淡水生物的慢性毒性数据,构建了基于对数正态分布模型的物种敏感度(species sensitivity distribution,SSD)曲线,并利用风险商和联合概率曲线法对成都市地表水中的三氯生和避蚊胺进行多层次生态风险评价。浓度水平结果显示,三氯生和避蚊胺在所有有效样品中均有检出。三氯生在主城区河道的浓度水平(13~77.2 ng·L-1)高于都江堰地区(0.7~4.95 ng·L-1)。类似地,避蚊胺在主城区河道采样点中的浓度水平(17.0~103.1 ng·L-1)高于都江堰地区(0.7~16.2 ng·L-1)。所有样点均未检出甲基三氯生。生态风险评价结果显示,以种群、行为和生物化学指标为测试终点的慢性毒性数据推导出的预测无效应浓度(predicted no effect concentration,PNEC)分别为22.8 ng·L-1(三氯生)和25.7 ng·L-1(避蚊胺)。三氯生和避蚊胺在都江堰上游风险商<1,主城区风险商<4。成都市地表水中,三氯生对1%~5%的水生生物造成慢性毒性影响的概率为82.72%~26.89%,避蚊胺对1%~5%的水生生物造成慢性毒性影响的概率为67.25%~2.529%。2种目标物的浓度与电导率、溶解氧等水质参数之间存在显著的相关性。
  • 加载中
  • Wang Q, Kelly B C. Occurrence and distribution of synthetic musks, triclosan and methyl triclosan in a tropical urban catchment:Influence of land-use proximity, rainfall and physicochemical properties[J]. Science of the Total Environment, 2017, 574:1439-1447
    Zhang Q Q, Ying G G, Chen Z F, et al. Basin-scale emission and multimedia fate of triclosan in whole China[J]. Environmental Science and Pollution Research International, 2015, 22(13):10130-10143
    Chen Z F, Ying G G, Liu Y S, et al. Triclosan as a surrogate for household biocides:An investigation into biocides in aquatic environments of a highly urbanized region[J]. Water Research, 2014, 58:269-279
    Wu J L, Lam N P, Martens D, et al. Triclosan determination in water related to wastewater treatment[J]. Talanta, 2007, 72(5):1650-1654
    Peng X Z, Yu Y Y, Tang C M, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China[J]. The Science of the Total Environment, 2008, 397(1-3):158-166
    Peng F J, Pan C G, Zhang M, et al. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers:Guangzhou as a case study in China[J]. The Science of the Total Environment, 2017, 589:46-55
    Raut S A, Angus R A. Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis[J]. Environmental Toxicology and Chemistry, 2010, 29(6):1287-1291
    Su C, Cui Y, Liu D, et al. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China:Which chemicals are the prioritized ones?[J]. The Science of the Total Environment, 2020, 720:137652
    Montes R, Rodríguez I, Rubí E, et al. Dispersive liquid-liquid microextraction applied to the simultaneous derivatization and concentration of triclosan and methyltriclosan in water samples[J]. Journal of Chromatography A, 2009, 1216(2):205-210
    Ferrey M L, Hamilton M C, Backe W J, et al. Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation[J]. Science of the Total Environment, 2018, 612:1488-1497
    Merel S, Snyder S A. Critical assessment of the ubiquitous occurrence and fate of the insect repellent N,N-diethyl-m-toluamide in water[J]. Environment International, 2016, 96:98-117
    Merel S, Nikiforov A I, Snyder S A. Potential analytical interferences and seasonal variability in diethyltoluamide environmental monitoring programs[J]. Chemosphere, 2015, 127:238-245
    Corbel V, Stankiewicz M, Pennetier C, et al. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet[J]. BMC Biology, 2009, 7:47
    冯永亮. 基于物种敏感度分布的概率生态风险评价的Matlab实现[J]. 唐山学院学报, 2020, 33(6):18-23

    , 36 Feng Y L. The realization of probabilistic ecological risk assessment based on species sensitivity distribution by Matlab[J]. Journal of Tangshan University, 2020, 33(6):18-23, 36(in Chinese)

    Kantiani L, Farré M, Asperger D, et al. Triclosan and methyl-triclosan monitoring study in the northeast of Spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography-mass spectrometry[J]. Journal of Hydrology, 2008, 361(1-2):1-9
    Chau W C, Wu J L, Cai Z W. Investigation of levels and fate of triclosan in environmental waters from the analysis of gas chromatography coupled with ion trap mass spectrometry[J]. Chemosphere, 2008, 73(1):S13-S17
    Liu N, Jin X W, Feng C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters:A proposed multiple-level system[J]. Environment International, 2020, 136:105454
    Dai G H, Wang B, Huang J, et al. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China[J]. Chemosphere, 2015, 119:1033-1039
    Ma R X, Wang B, Lu S Y, et al. Characterization of pharmaceutically active compounds in Dongting Lake, China:Occurrence, chiral profiling and environmental risk[J]. The Science of the Total Environment, 2016, 557-558:268-275
    Zhu S C, Chen H, Li J N. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake Basin, Eastern China[J]. Ecotoxicology and Environmental Safety, 2013, 96:154-159
    Proia L, Vilches C, Boninneau C, et al. Drought episode modulates the response of river biofilms to triclosan[J]. Aquatic Toxicology, 2013, 127:36-45
    Smith G R, Burgett A A. Effects of three organic wastewater contaminants on American toad, Bufo americanus, tadpoles[J]. Ecotoxicology, 2005, 14(4):477-482
    Orvos D R, Versteeg D J, Inauen J, et al. Aquatic toxicity of triclosan[J]. Environmental Toxicology and Chemistry, 2002, 21(7):1338-1349
    Cho E A. Bioturbation as a novel method to characterize the toxicity of aquatic sediment[D]. Raleigh:North Carolina State University, 2005:103-104
    Martínez-Paz P, Morales M, Martínez-Guitarte J L, et al. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay[J]. Mutation Research Genetic Toxicology and Environmental Mutagenesis, 2013, 758(1-2):41-47
    Wilson B A, Smith V H, deNoyelles F Jr, et al. Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages[J]. Environmental Science & Technology, 2003, 37(9):1713-1719
    Ciniglia C, Cascone C, Giudice R L, et al. Application of methods for assessing the geno- and cytotoxicity of triclosan to C. ehrenbergii[J]. Journal of Hazardous Materials, 2005, 122(3):227-232
    Huang S S, Benskin J P, Chandramouli B, et al. Xenobiotics produce distinct metabolomic responses in zebrafish larvae (Danio rerio)[J]. Environmental Science & Technology, 2016, 50(12):6526-6535
    Flaherty C M, Dodson S I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction[J]. Chemosphere, 2005, 61(2):200-207
    Parolini M, Pedriali A, Binelli A. Application of a biomarker response index for ranking the toxicity of five pharmaceutical and personal care products (PPCPs) to the bivalve Dreissena polymorpha[J]. Archives of Environmental Contamination and Toxicology, 2013, 64(3):439-447
    DeLorenzo M E, Fleming J. Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta[J]. Archives of Environmental Contamination and Toxicology, 2008, 54(2):203-210
    United States Environmental Protection Agency (US EPA). Pesticide Ecotoxicity Database[DB/OL]. (2019-07-23)[2019-07-24]. https://ecotox.ipmcenters.org/
    Fraker S L, Smith G R. Direct and interactive effects of ecologically relevant concentrations of organic wastewater contaminants on Rana pipiens tadpoles[J]. Environmental Toxicology, 2004, 19(3):250-256
    Ishibashi H, Matsumura N, Hirano M, et al. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin[J]. Aquatic Toxicology, 2004, 67(2):167-179
    Schultz M M, Bartell S E, Schoenfuss H L. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants, on anatomy, physiology, and behavior of the fathead minnow (Pimephales promelas)[J]. Archives of Environmental Contamination and Toxicology, 2012, 63(1):114-124
    Martinez Gomez D A. A survey of selected pharmaceuticals and personal care products in a binational river and their effects on a member of its zooplankton community, Plationus patulus (Rotifera)[D]. El Paso:University of Texas at El Paso, 2012:72
    Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology and Chemistry, 2008, 27(5):1201-1208
    Matsumura N, Ishibashi H, Hirano M, et al. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis)[J]. Biological & Pharmaceutical Bulletin, 2005, 28(9):1748-1751
    Campos D, Gravato C, Quintaneiro C, et al. Responses of the aquatic midge Chironomus riparius to DEET exposure[J]. Aquatic Toxicology, 2016, 172:80-85
    von Elert E, Preuss K, Fink P. Infodisruption of inducible anti-predator defenses through commercial insect repellents?[J]. Environmental Pollution, 2016, 210:18-26
    Zenobio J E, Sanchez B C, Archuleta L C, et al. Effects of triclocarban, N,N-diethyl-meta-toluamide, and a mixture of pharmaceuticals and personal care products on fathead minnows (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2014, 33(4):910-919
    You L H, Nguyen V T, Pal A, et al. Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors[J]. The Science of the Total Environment, 2015, 536:955-963
  • 加载中
计量
  • 文章访问数:  1963
  • HTML全文浏览数:  1963
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-03
孙静, 沈华泾, 柯紫妍, 方淑红, 印红玲. 成都市地表水中三氯生和避蚊胺的浓度分析及生态风险[J]. 生态毒理学报, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002
引用本文: 孙静, 沈华泾, 柯紫妍, 方淑红, 印红玲. 成都市地表水中三氯生和避蚊胺的浓度分析及生态风险[J]. 生态毒理学报, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002
Sun Jing, Shen Huajing, Ke Ziyan, Fang Shuhong, Yin Hongling. Concentration Analysis and Ecological Risk of Triclosan and Diethyltoluamide in Surface Water of Chengdu, China[J]. Asian journal of ecotoxicology, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002
Citation: Sun Jing, Shen Huajing, Ke Ziyan, Fang Shuhong, Yin Hongling. Concentration Analysis and Ecological Risk of Triclosan and Diethyltoluamide in Surface Water of Chengdu, China[J]. Asian journal of ecotoxicology, 2022, 17(3): 210-221. doi: 10.7524/AJE.1673-5897.20210503002

成都市地表水中三氯生和避蚊胺的浓度分析及生态风险

    通讯作者: 孙静, E-mail: sunj198611@163.com
    作者简介: 孙静(1986—),女,博士,讲师,研究方向为水环境化学、新型污染物的分析及生态风险评价,E-mail:sunj198611@163.com
  • 1. 成都信息工程大学资源环境学院, 成都 610225;
  • 2. 中国科学院城市环境研究所城市环境与健康重点实验室, 厦门 361021;
  • 3. 中国科学院大学, 北京 100049;
  • 4. 福建农林大学生命科学学院, 福州 350002
基金项目:

四川省教育厅基金资助项目(2017Z060);成都信息工程大学校引进人才科研启动经费(KYTZ201740);成都信息工程大学校内项目(CRF201609)

摘要: 为探究成都市地表水中三氯生和避蚊胺的浓度水平和潜在的生态风险,在2017年5月采集并分析了成都市主城区和都江堰地区水体中共20个样品。使用固相萃取富集,N-(特丁基二甲基硅)-N-甲基三氟乙酰胺衍生化,气相色谱质谱法测定了三氯生、甲基三氯生和避蚊胺在成都市地表水中的浓度。搜集并筛选出三氯生和避蚊胺对淡水生物的慢性毒性数据,构建了基于对数正态分布模型的物种敏感度(species sensitivity distribution,SSD)曲线,并利用风险商和联合概率曲线法对成都市地表水中的三氯生和避蚊胺进行多层次生态风险评价。浓度水平结果显示,三氯生和避蚊胺在所有有效样品中均有检出。三氯生在主城区河道的浓度水平(13~77.2 ng·L-1)高于都江堰地区(0.7~4.95 ng·L-1)。类似地,避蚊胺在主城区河道采样点中的浓度水平(17.0~103.1 ng·L-1)高于都江堰地区(0.7~16.2 ng·L-1)。所有样点均未检出甲基三氯生。生态风险评价结果显示,以种群、行为和生物化学指标为测试终点的慢性毒性数据推导出的预测无效应浓度(predicted no effect concentration,PNEC)分别为22.8 ng·L-1(三氯生)和25.7 ng·L-1(避蚊胺)。三氯生和避蚊胺在都江堰上游风险商<1,主城区风险商<4。成都市地表水中,三氯生对1%~5%的水生生物造成慢性毒性影响的概率为82.72%~26.89%,避蚊胺对1%~5%的水生生物造成慢性毒性影响的概率为67.25%~2.529%。2种目标物的浓度与电导率、溶解氧等水质参数之间存在显著的相关性。

English Abstract

参考文献 (42)

返回顶部

目录

/

返回文章
返回