重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征

石运刚, 刘嘉烈, 唐娜, 马艳, 庄僖, 李洁, 郑晶. 重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征[J]. 生态毒理学报, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001
引用本文: 石运刚, 刘嘉烈, 唐娜, 马艳, 庄僖, 李洁, 郑晶. 重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征[J]. 生态毒理学报, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001
Shi Yungang, Liu Jialie, Tang Na, Ma Yan, Zhuang Xi, Li Jie, Zheng Jing. Emission Characteristics of Typical Environmental Estrogens from Waste Treatment Plants and Sewage Treatment Plants in Chongqing[J]. Asian journal of ecotoxicology, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001
Citation: Shi Yungang, Liu Jialie, Tang Na, Ma Yan, Zhuang Xi, Li Jie, Zheng Jing. Emission Characteristics of Typical Environmental Estrogens from Waste Treatment Plants and Sewage Treatment Plants in Chongqing[J]. Asian journal of ecotoxicology, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001

重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征

    作者简介: 石运刚(1978—),男,学士,研究方向为化学品风险防控,E-mail:sygonline@sina.com
    通讯作者: 庄僖, E-mail: zhuangxi@scies.org
  • 基金项目:

    重庆市长江流域化学品环境风险管理技术支撑体系研究(2019-112)

  • 中图分类号: X171.5

Emission Characteristics of Typical Environmental Estrogens from Waste Treatment Plants and Sewage Treatment Plants in Chongqing

    Corresponding author: Zhuang Xi, zhuangxi@scies.org
  • Fund Project:
  • 摘要: 为了研究重庆市典型污染源中酚类环境雌激素(phenolic environmental estrogens,PEEs)和邻苯二甲酸酯(phthalic acid esters,PAEs)的排放特征,评估其对长江水域环境的潜在风险,选取了重庆市人口或工业分布密集、污水排放量大的3家垃圾处理厂和16家污水处理厂作为研究对象,检测了进水和出水中3种PEEs和16种PAEs的浓度,并采用风险商(risk quotient,RQ)法和各物质的雌二醇(estradiol,E2)当量(estradiol equivalent quantity,EEQ)分别评估了出水中主要PEEs和PAEs的生态风险水平和雌激素活性效应。结果表明,在进出水中均检测到3种PEEs和11种PAEs,其中垃圾渗滤液中PEEs (11.07~278.41 μg·L-1)和PAEs (25.83~97.17 μg·L-1)的总浓度最高,工业污水处理厂的进水最低(分别为0.04~13.97 μg·L-1和0.14~4.69 μg·L-1),出水中PEEs和PAEs的浓度相当(分别为0.05~8.96 μg·L-1和1.37~4.19 μg·L-1)。各污染源对辛基酚(4-tert-octylphenol,4-t-OP)和邻苯二甲酸二壬酯(dinonyl phthalate,DNP)的平均去除率达到88%和95%;其中,膜分离技术去除效果最好,活性污泥和氧化沟技术去除率较低。出水中生态风险和雌激素活性最高的化合物均为壬基酚(4-nonylphenol,4-NP),表明4-NP对水环境中的生物存在一定的潜在风险。
  • 加载中
  • Roy J R, Chakraborty S, Chakraborty T R. Estrogen-like endocrine disrupting chemicals affecting puberty in humans:A review[J]. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research, 2009, 15(6):RA137
    Jobling S, Casey D, Rodgers-Gray T, et al. Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent[J]. Aquatic Toxicology, 2004, 66(2):207-222
    Li Z H, Zhang W Q, Shan B Q. The effects of urbanization and rainfall on the distribution of, and risks from, phenolic environmental estrogens in river sediment[J]. Environmental Pollution, 2019, 250:1010-1018
    Huang Y Q, Wong C K C, Zheng J S, et al. Bisphenol A (BPA) in China:A review of sources, environmental levels, and potential human health impacts[J]. Environment International, 2012, 42:91-99
    Fromme H, Küchler T, Otto T, et al. Occurrence of phthalates and bisphenol A and F in the environment[J]. Water Research, 2002, 36(6):1429-1438
    Högberg J, Hanberg A, Berglund M, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations[J]. Environmental Health Perspectives, 2008, 116(3):334-339
    Selvaraj K K, Shanmugam G, Sampath S, et al. GC-MS determination of bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment[J]. Ecotoxicology and Environmental Safety, 2014, 99:13-20
    Yan Z H, Yang X F, Lu G H, et al. Potential environmental implications of emerging organic contaminants in Taihu Lake, China:Comparison of two ecotoxicological assessment approaches[J]. The Science of the Total Environment, 2014, 470-471:171-179
    刘敏, 林玉君, 曾锋, 等. 城区湖泊表层沉积物中邻苯二甲酸酯的组成与分布特征[J]. 环境科学学报, 2007, 27(8):1377-1383

    Liu M, Lin Y J, Zeng F, et al. The distribution and composition of phthalate esters in the sediment of urban lakes in Guangzhou[J]. Acta Scientiae Circumstantiae, 2007, 27(8):1377-1383(in Chinese)

    Johnson A C, Sumpter J P. Removal of endocrine-disrupting chemicals in activated sludge treatment works[J]. Environmental Science & Technology, 2001, 35(24):4697-4703
    Nasu M, Goto M, Kato H, et al. Study on endocrine disrupting chemicals in wastewater treatment plants[J]. Water Science and Technology, 2001, 43(2):101-108
    Ying G G, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates:A review[J]. Environment International, 2002, 28(3):215-226
    Al-Saleh I, Elkhatib R, Al-Rajoudi T, et al. Assessing the concentration of phthalate esters (PAEs) and bisphenol A (BPA) and the genotoxic potential of treated wastewater (final effluent) in Saudi Arabia[J]. The Science of the Total Environment, 2017, 578:440-451
    Abdel daiem M M, Rivera-Utrilla J, Ocampo-Pérez R, et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies:A review[J]. Journal of Environmental Management, 2012, 109:164-178
    Asakura H, Matsuto T, Tanaka N. Behavior of endocrine-disrupting chemicals in leachate from MSW landfill sites in Japan[J]. Waste Management, 2004, 24(6):613-622
    Gao D W, Li Z, Wen Z D, et al. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China[J]. Chemosphere, 2014, 95:24-32
    Peng F J, Pan C G, Zhang M, et al. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers:Guangzhou as a case study in China[J]. Science of the Total Environment, 2017, 589:46-55
    卓丽, 石运刚, 蔡凤珊, 等. 长江干流、嘉陵江和乌江重庆段邻苯二甲酸酯污染特征及生态风险评估[J]. 生态毒理学报, 2020, 15(3):158-170

    Zhuo L, Shi Y G, Cai F S, et al. Pollution characteristics and ecological risk assessment of phthalate esters in the Yangtze River, Jialing River and Wujiang River in Chongqing, China[J]. Asian Journal of Ecotoxicology, 2020, 15(3):158-170(in Chinese)

    Zhao J L, Ying G G, Wang L, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry[J]. Science of the Total Environment, 2009, 407(2):962-974
    杨弘毅, 李涛明. 主编. 2018年重庆统计年鉴[M]. 北京:中国统计出版社, 2018:53-81
    卓丽, 许榕发, 石运刚, 等. 重庆长江流域水体中8种典型环境雌激素污染特征[J]. 生态毒理学报, 2020, 15(3):149-157

    Zhuo L, Xu R F, Shi Y G, et al. Estrogens in surface water of the Yangtze River in Chongqing section[J]. Asian Journal of Ecotoxicology, 2020, 15(3):149-157(in Chinese)

    European Commission (EC). Technical guidance documents in support of Commission Directive 93/67/EEC on risk assessment, Part Ⅱ[R]. Ispra, Italy:EC, 2003
    European Commission (EC). Technical guidance document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances[R]. Ispra, Italy:EC, 1996
    Wu F C, Fang Y X, Li Y S, et al. Predicted No-Effect Concentration and Risk Assessment for 17-beta-estradiol in Waters of China[M]//Reviews of Environmental Contamination and Toxicology. Cham:Springer International Publishing, 2013:31-56
    United States Environmental Protection Agency (US EPA). Priority pollutants[R]. Washington DC:US EPA, 2014
    Canadian Council of Ministers of the Environment (CCME). Canadian water quality guidelines for the protection of aquatic life:Chromium[R]. Ontario:CCME, 1999
    The European Parliament and the Council of the European Union (EPCEU). Environmental quality standards for priority substances and certain other pollutants 2008, maximum allowable concentration, in inland surface water[R]. Strasbourg:EPCEU, 2008
    United States Environmental Protection Agency (US EPA). National recommended water quality criteria[R]. Washington DC:US EPA, 2009
    Gao D W, Li Z, Wang H, et al. An overview of phthalate acid ester pollution in China over the last decade:Environmental occurrence and human exposure[J]. The Science of the Total Environment, 2018, 645:1400-1409
    廖日权, 许尤厚, 钟秋平, 等. 茅尾海近岸表层沉积物中邻苯二甲酸酯的组成分布特征[J]. 生态环境学报, 2015, 24(8):1342-1347

    Liao R Q, Xu Y H, Zhong Q P, et al. Distribution and chemical composition of phthalic acid esters in surface sediments in Guangxi Maowei Sea littoral[J]. Ecology and Environmental Sciences, 2015, 24(8):1342-1347(in Chinese)

    Lin L, Dong L, Wang Z, et al. Hydrochemical composition, distribution, and sources of typical organic pollutants and metals in Lake Bangong Co, Tibet[J]. Environmental Science and Pollution Research International, 2021, 28(8):9877-9888
    Qi C D, Huang J, Wang B, et al. Contaminants of emerging concern in landfill leachate in China:A review[J]. Emerging Contaminants, 2018, 4(1):1-10
    Wang J L, Chen L J, Shi H C, et al. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge[J]. Chemosphere, 2000, 41(8):1245-1248
    Xu X R, Li H B, Gu J D. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1[J]. International Biodeterioration & Biodegradation, 2005, 55(1):9-15
    Wu Q, Lam J C W, Kwok K Y, et al. Occurrence and fate of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in municipal sewage treatment systems[J]. Journal of Environmental Sciences, 2017, 61:49-58
    Johnson A C, Aerni H R, Gerritsen A, et al. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices[J]. Water Research, 2005, 39(1):47-58
    Sahar E, Ernst M, Godehardt M, et al. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter:Conventional activated sludge followed by ultrafiltration versus membrane bioreactor[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2011, 63(4):733-740
    Nguyen L N, Hai F I, Kang J G, et al. Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes[J]. International Biodeterioration & Biodegradation, 2013, 85:474-482
    Tadkaew N, Hai F I, McDonald J A, et al. Removal of trace organics by MBR treatment:The role of molecular properties[J]. Water Research, 2011, 45(8):2439-2451
    Ternes T A, Meisenheimer M, McDowell D, et al. Removal of pharmaceuticals during drinking water treatment[J]. Environmental Science & Technology, 2002, 36(17):3855-3863
    Zhang C, Zeng G M, Huang D L, et al. Combined removal of di(2-ethylhexyl)phthalate (DEHP) and Pb(Ⅱ) by using a cutinase loaded nanoporous gold-polyethyleneimine adsorbent[J]. RSC Advice, 2014, 4(98):55511-55518
    Stevens-Garmon J, Drewes J E, Khan S J, et al. Sorption of emerging trace organic compounds onto wastewater sludge solids[J]. Water Research, 2011, 45(11):3417-3426
    Paterakis N, Chiu T Y, Koh Y K K, et al. The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates[J]. Journal of Hazardous Materials, 2012, 199-200:88-95
    郝瑞霞, 梁鹏, 周玉文. 城市污水处理过程中壬基酚的迁移转化途径研究[J]. 中国给水排水, 2007, 23(1):105-108

    Hao R X, Liang P, Zhou Y W. Study on translation and conversion behavior of nonylphenol in municipal wastewater treatment[J]. China Water & Wastewater, 2007, 23(1):105-108(in Chinese)

  • 加载中
计量
  • 文章访问数:  2252
  • HTML全文浏览数:  2252
  • PDF下载数:  126
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-22
石运刚, 刘嘉烈, 唐娜, 马艳, 庄僖, 李洁, 郑晶. 重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征[J]. 生态毒理学报, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001
引用本文: 石运刚, 刘嘉烈, 唐娜, 马艳, 庄僖, 李洁, 郑晶. 重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征[J]. 生态毒理学报, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001
Shi Yungang, Liu Jialie, Tang Na, Ma Yan, Zhuang Xi, Li Jie, Zheng Jing. Emission Characteristics of Typical Environmental Estrogens from Waste Treatment Plants and Sewage Treatment Plants in Chongqing[J]. Asian journal of ecotoxicology, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001
Citation: Shi Yungang, Liu Jialie, Tang Na, Ma Yan, Zhuang Xi, Li Jie, Zheng Jing. Emission Characteristics of Typical Environmental Estrogens from Waste Treatment Plants and Sewage Treatment Plants in Chongqing[J]. Asian journal of ecotoxicology, 2022, 17(3): 189-200. doi: 10.7524/AJE.1673-5897.20210322001

重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征

    通讯作者: 庄僖, E-mail: zhuangxi@scies.org
    作者简介: 石运刚(1978—),男,学士,研究方向为化学品风险防控,E-mail:sygonline@sina.com
  • 1. 重庆市固体废物管理中心, 重庆 400020;
  • 2. 生态环境部华南环境科学研究所, 国家环境保护环境污染健康风险评价重点实验室, 广州 510655
基金项目:

重庆市长江流域化学品环境风险管理技术支撑体系研究(2019-112)

摘要: 为了研究重庆市典型污染源中酚类环境雌激素(phenolic environmental estrogens,PEEs)和邻苯二甲酸酯(phthalic acid esters,PAEs)的排放特征,评估其对长江水域环境的潜在风险,选取了重庆市人口或工业分布密集、污水排放量大的3家垃圾处理厂和16家污水处理厂作为研究对象,检测了进水和出水中3种PEEs和16种PAEs的浓度,并采用风险商(risk quotient,RQ)法和各物质的雌二醇(estradiol,E2)当量(estradiol equivalent quantity,EEQ)分别评估了出水中主要PEEs和PAEs的生态风险水平和雌激素活性效应。结果表明,在进出水中均检测到3种PEEs和11种PAEs,其中垃圾渗滤液中PEEs (11.07~278.41 μg·L-1)和PAEs (25.83~97.17 μg·L-1)的总浓度最高,工业污水处理厂的进水最低(分别为0.04~13.97 μg·L-1和0.14~4.69 μg·L-1),出水中PEEs和PAEs的浓度相当(分别为0.05~8.96 μg·L-1和1.37~4.19 μg·L-1)。各污染源对辛基酚(4-tert-octylphenol,4-t-OP)和邻苯二甲酸二壬酯(dinonyl phthalate,DNP)的平均去除率达到88%和95%;其中,膜分离技术去除效果最好,活性污泥和氧化沟技术去除率较低。出水中生态风险和雌激素活性最高的化合物均为壬基酚(4-nonylphenol,4-NP),表明4-NP对水环境中的生物存在一定的潜在风险。

English Abstract

参考文献 (44)

返回顶部

目录

/

返回文章
返回