三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤

张鹏, 郑丽洋, 高会会, 毛大庆, 罗义. 三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤[J]. 生态毒理学报, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002
引用本文: 张鹏, 郑丽洋, 高会会, 毛大庆, 罗义. 三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤[J]. 生态毒理学报, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002
Zhang Peng, Zheng Liyang, Gao Huihui, Mao Daqing, Luo Yi. Triclosan Exposure Exaggerates Injury of Intestine and Liver Function Induced by High Fat Diet in Mice[J]. Asian journal of ecotoxicology, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002
Citation: Zhang Peng, Zheng Liyang, Gao Huihui, Mao Daqing, Luo Yi. Triclosan Exposure Exaggerates Injury of Intestine and Liver Function Induced by High Fat Diet in Mice[J]. Asian journal of ecotoxicology, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002

三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤

    作者简介: 张鹏(1991-),男,博士研究生,研究方向为健康毒理学,E-mail:zpeng@mail.nankai.edu.cn
    通讯作者: 罗义, E-mail: luoy@nankai.edu.cn
  • 基金项目:

    国家自然科学基金重点资助项目(41831287);国家杰出青年科学基金资助项目(41525013);天津市自然科学基金资助项目(19JCZDJC40800)

  • 中图分类号: X171.5

Triclosan Exposure Exaggerates Injury of Intestine and Liver Function Induced by High Fat Diet in Mice

    Corresponding author: Luo Yi, luoy@nankai.edu.cn
  • Fund Project:
  • 摘要: 三氯生(triclosan,TCS)在环境中被广泛检出,已成为重要的环境污染物,且TCS暴露能够影响机体的肠道菌群组成和脂类物质代谢过程。为了探讨TCS暴露对高脂饮食(high fat diet,HFD)诱导的肝脏功能损伤的影响及其机制,C57BL/6J小鼠随机分为正常饮食对照组、TCS组、HFD组和HFD+TCS组;首先对TCS组和HFD+TCS组小鼠进行提前一周TCS(10 μg·g-1饲料)暴露,然后再同时进行6周的TCS暴露和HFD喂养。实验结束后,利用细菌特征序列对肠道菌群进行绝对定量分析,利用苏木精-伊红染色、实时荧光定量PCR、酶联免疫吸附测定、蛋白免疫印迹和流式细胞术等试验技术检测小鼠肠道和肝脏等生理变化状况。与对照组相比,TCS暴露和高脂饮食均能明显引起肠道菌群中厚壁菌门和拟杆菌门含量降低,同时引起小鼠脾脏中CD8+和CD4+ T细胞比例失调,但未导致显著的肠道屏障损伤和脂多糖(lipopolysaccharide,LPS)异位;高脂饮食能够显著提高小鼠血清中丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase,AST)和甘油三酯(triglyceride,TG)的水平,而单独TCS暴露并没有引起明显的肝脏功能紊乱。与HFD组相比,HFD和TCS协同作用激活了小鼠肝脏中Toll样受体4 (toll-like receptor 4,TLR4)炎症通路,造成小鼠肝脏炎症反应,并显著提高了小鼠ALT和AST水平,加剧了高脂饮食对小鼠肝脏功能的损伤。由此可知,TCS暴露通过引起小鼠肠道菌群紊乱和机体免疫响应,加剧高脂饮食诱导的小鼠肠道损伤和肝脏功能紊乱。
  • 加载中
  • Halden R U. On the need and speed of regulating triclosan and triclocarban in the United States[J]. Environmental Science & Technology, 2014, 48(7):3603-3611
    Perez A L, de Sylor M A, Slocombe A J, et al. Triclosan occurrence in freshwater systems in the United States (1999-2012):A meta-analysis[J]. Environmental Toxicology and Chemistry, 2013, 32(7):1479-1487
    Yueh M F, Tukey R H. Triclosan:A widespread environmental toxicant with many biological effects[J]. Annual Review of Pharmacology and Toxicology, 2016, 56:251-272
    Lu J, Guo J H. Disinfection spreads antimicrobial resistance[J]. Science, 2021, 371(6528):1-474
    Narrowe A B, Albuthi-Lantz M, Smith E P, et al. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure[J]. Microbiome, 2015, 3:6
    Chai L H, Chen A X, Luo P P, et al. Histopathological changes and lipid metabolism in the liver of Bufo gargarizans tadpoles exposed to triclosan[J]. Chemosphere, 2017, 182:255-266
    Sengupta N, Reardon D C, Gerard P D, et al. Exchange of polar lipids from adults to neonates in Daphnia magna:Perturbations in sphingomyelin allocation by dietary lipids and environmental toxicants[J]. PLoS One, 2017, 12(5):e0178131
    Heffernan A L, Baduel C, Toms L M, et al. Use of pooled samples to assess human exposure to parabens, benzophenone-3 and triclosan in Queensland, Australia[J]. Environment International, 2015, 85:77-83
    Provencher G, Bérubé R, Dumas P, et al. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1348:97-104
    Yin J, Wei L, Shi Y, et al. Chinese population exposure to triclosan and triclocarban as measured via human urine and nails[J]. Environmental Geochemistry and Health, 2016, 38(5):1125-1135
    Bever C S, Rand A A, Nording M, et al. Effects of triclosan in breast milk on the infant fecal microbiome[J]. Chemosphere, 2018, 203:467-473
    Feng Y X, Zhang P, Zhang Z B, et al. Endocrine disrupting effects of triclosan on the placenta in pregnant rats[J]. PLoS One, 2016, 11(5):e0154758
    Shim J, Weatherly L M, Luc R H, et al. Triclosan is a mitochondrial uncoupler in live zebrafish[J]. Journal of Applied Toxicology, 2016, 36(12):1662-1667
    Cherednichenko G, Zhang R, Bannister R A, et al. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(35):14158-14163
    Weatherly L M, Shim J, Hashmi H N, et al. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes[J]. Journal of Applied Toxicology, 2016, 36(6):777-789
    Anderson S E, Franko J, Kashon M L, et al. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2013, 132(1):96-106
    Yueh M F, Taniguchi K, Chen S J, et al. The commonly used antimicrobial additive triclosan is a liver tumor promoter[J]. PNAS, 2014, 111(48):17200-17205
    Wang B H, Yao M F, Lv L, et al. The human microbiota in health and disease[J]. Engineering, 2017, 3(1):71-82
    Cani P D, Amar J, Iglesias M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7):1761-1772
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408
    Mu Q H, Kirby J, Reilly C M, et al. Leaky gut as a danger signal for autoimmune diseases[J]. Frontiers in Immunology, 2017, 8:598
    Yueh M F, He F, Chen C, et al. Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49):31259-31266
    Hu J Z, Raikhel V, Gopalakrishnan K, et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model[J]. Microbiome, 2016, 4(1):26
    Sanidad K Z, Xiao H, Zhang G D. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health[J]. Gut Microbes, 2019, 10(3):434-437
    Schultz M M, Bartell S E, Schoenfuss H L. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants, on anatomy, physiology, and behavior of the fathead minnow (Pimephales promelas)[J]. Archives of Environmental Contamination and Toxicology, 2012, 63(1):114-124
    Yang G C, Tsai H J, Chang F K. Occurrence of triclosan in the tropical rivers receiving the effluents from the hospital wastewater treatment plant[J]. Environmental Monitoring and Assessment, 2015, 187(3):151
    Regnault C, Willison J, Veyrenc S, et al. Metabolic and immune impairments induced by the endocrine disruptors benzopyrene and triclosan in Xenopus tropicalis[J]. Chemosphere, 2016, 155:519-527
    Usal M, Regnault C, Veyrenc S, et al. Concomitant exposure to benzopyrene and triclosan at environmentally relevant concentrations induces metabolic syndrome with multigenerational consequences in Silurana (Xenopus) tropicalis[J]. Science of the Total Environment, 2019, 689:149-159
    Ho J C H, Hsiao C D, Kawakami K, et al. Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos[J]. Aquatic Toxicology, 2016, 173:29-35
    Asgharpour A, Cazanave S C, Pacana T, et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer[J]. Journal of Hepatology, 2016, 65(3):579-588
    Liang Y R, Zhan J, Liu D H, et al. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota[J]. Microbiome, 2019, 7(1):19
    Chi Y L, Lin Y, Zhu H M, et al. PCBs-high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice[J]. Environmental Pollution, 2018, 239:332-341
    Leung Y K, Govindarajah V, Cheong A, et al. Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk[J]. Endocrine-Related Cancer, 2017, 24(7):365-378
    Österreicher C H, Trauner M. Xenobiotic-induced liver injury and fibrosis[J]. Expert Opinion on Drug Metabolism & Toxicology, 2012, 8(5):571-580
    Rude K M, Pusceddu M M, Keogh C E, et al. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice[J]. Environmental Pollution, 2019, 253:708-721
    Petriello M C, Hoffman J B, Vsevolozhskaya O, et al. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis[J]. Environmental Pollution, 2018, 242:1022-1032
    Mahalak K K, Firrman J, Lee J J, et al. Triclosan has a robust, yet reversible impact on human gut microbial composition in vitro[J]. PLoS One, 2020, 15(6):e0234046
    Rizzatti G, Lopetuso L R, Gibiino G, et al. Proteobacteria:A common factor in human diseases[J]. BioMed Research International, 2017, 2017:9351507
    Sovran B, Planchais J, Jegou S, et al. Enterobacteriaceae are essential for the modulation of colitis severity by fungi[J]. Microbiome, 2018, 6(1):152
    Hoyles L, Jiménez-Pranteda M L, Chilloux J, et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota[J]. Microbiome, 2018, 6(1):73
    Palmela C, Chevarin C, Xu Z L, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease[J]. Gut, 2018, 67(3):574-587
    Yang H X, Wang W C, Romano K A, et al. A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice[J]. Science Translational Medicine, 2018, 10(443):eaan4116
    Yueh M F, Taniguchi K, Chen S J, et al. The commonly used antimicrobial additive triclosan is a liver tumor promoter[J]. PNAS, 2014, 111(48):17200-17205
  • 加载中
计量
  • 文章访问数:  1900
  • HTML全文浏览数:  1900
  • PDF下载数:  122
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-02-20
张鹏, 郑丽洋, 高会会, 毛大庆, 罗义. 三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤[J]. 生态毒理学报, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002
引用本文: 张鹏, 郑丽洋, 高会会, 毛大庆, 罗义. 三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤[J]. 生态毒理学报, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002
Zhang Peng, Zheng Liyang, Gao Huihui, Mao Daqing, Luo Yi. Triclosan Exposure Exaggerates Injury of Intestine and Liver Function Induced by High Fat Diet in Mice[J]. Asian journal of ecotoxicology, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002
Citation: Zhang Peng, Zheng Liyang, Gao Huihui, Mao Daqing, Luo Yi. Triclosan Exposure Exaggerates Injury of Intestine and Liver Function Induced by High Fat Diet in Mice[J]. Asian journal of ecotoxicology, 2021, 16(4): 131-140. doi: 10.7524/AJE.1673-5897.20210220002

三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤

    通讯作者: 罗义, E-mail: luoy@nankai.edu.cn
    作者简介: 张鹏(1991-),男,博士研究生,研究方向为健康毒理学,E-mail:zpeng@mail.nankai.edu.cn
  • 1. 南开大学环境科学与工程学院, 天津 300350;
  • 2. 南开大学医学院, 天津 300071;
  • 3. 南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210093
基金项目:

国家自然科学基金重点资助项目(41831287);国家杰出青年科学基金资助项目(41525013);天津市自然科学基金资助项目(19JCZDJC40800)

摘要: 三氯生(triclosan,TCS)在环境中被广泛检出,已成为重要的环境污染物,且TCS暴露能够影响机体的肠道菌群组成和脂类物质代谢过程。为了探讨TCS暴露对高脂饮食(high fat diet,HFD)诱导的肝脏功能损伤的影响及其机制,C57BL/6J小鼠随机分为正常饮食对照组、TCS组、HFD组和HFD+TCS组;首先对TCS组和HFD+TCS组小鼠进行提前一周TCS(10 μg·g-1饲料)暴露,然后再同时进行6周的TCS暴露和HFD喂养。实验结束后,利用细菌特征序列对肠道菌群进行绝对定量分析,利用苏木精-伊红染色、实时荧光定量PCR、酶联免疫吸附测定、蛋白免疫印迹和流式细胞术等试验技术检测小鼠肠道和肝脏等生理变化状况。与对照组相比,TCS暴露和高脂饮食均能明显引起肠道菌群中厚壁菌门和拟杆菌门含量降低,同时引起小鼠脾脏中CD8+和CD4+ T细胞比例失调,但未导致显著的肠道屏障损伤和脂多糖(lipopolysaccharide,LPS)异位;高脂饮食能够显著提高小鼠血清中丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase,AST)和甘油三酯(triglyceride,TG)的水平,而单独TCS暴露并没有引起明显的肝脏功能紊乱。与HFD组相比,HFD和TCS协同作用激活了小鼠肝脏中Toll样受体4 (toll-like receptor 4,TLR4)炎症通路,造成小鼠肝脏炎症反应,并显著提高了小鼠ALT和AST水平,加剧了高脂饮食对小鼠肝脏功能的损伤。由此可知,TCS暴露通过引起小鼠肠道菌群紊乱和机体免疫响应,加剧高脂饮食诱导的小鼠肠道损伤和肝脏功能紊乱。

English Abstract

参考文献 (43)

返回顶部

目录

/

返回文章
返回