Halden R U. On the need and speed of regulating triclosan and triclocarban in the United States[J]. Environmental Science & Technology, 2014, 48(7):3603-3611
Perez A L, de Sylor M A, Slocombe A J, et al. Triclosan occurrence in freshwater systems in the United States (1999-2012):A meta-analysis[J]. Environmental Toxicology and Chemistry, 2013, 32(7):1479-1487
Yueh M F, Tukey R H. Triclosan:A widespread environmental toxicant with many biological effects[J]. Annual Review of Pharmacology and Toxicology, 2016, 56:251-272
Lu J, Guo J H. Disinfection spreads antimicrobial resistance[J]. Science, 2021, 371(6528):1-474
Narrowe A B, Albuthi-Lantz M, Smith E P, et al. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure[J]. Microbiome, 2015, 3:6
Chai L H, Chen A X, Luo P P, et al. Histopathological changes and lipid metabolism in the liver of Bufo gargarizans tadpoles exposed to triclosan[J]. Chemosphere, 2017, 182:255-266
Sengupta N, Reardon D C, Gerard P D, et al. Exchange of polar lipids from adults to neonates in Daphnia magna:Perturbations in sphingomyelin allocation by dietary lipids and environmental toxicants[J]. PLoS One, 2017, 12(5):e0178131
Heffernan A L, Baduel C, Toms L M, et al. Use of pooled samples to assess human exposure to parabens, benzophenone-3 and triclosan in Queensland, Australia[J]. Environment International, 2015, 85:77-83
Provencher G, Bérubé R, Dumas P, et al. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1348:97-104
Yin J, Wei L, Shi Y, et al. Chinese population exposure to triclosan and triclocarban as measured via human urine and nails[J]. Environmental Geochemistry and Health, 2016, 38(5):1125-1135
Bever C S, Rand A A, Nording M, et al. Effects of triclosan in breast milk on the infant fecal microbiome[J]. Chemosphere, 2018, 203:467-473
Feng Y X, Zhang P, Zhang Z B, et al. Endocrine disrupting effects of triclosan on the placenta in pregnant rats[J]. PLoS One, 2016, 11(5):e0154758
Shim J, Weatherly L M, Luc R H, et al. Triclosan is a mitochondrial uncoupler in live zebrafish[J]. Journal of Applied Toxicology, 2016, 36(12):1662-1667
Cherednichenko G, Zhang R, Bannister R A, et al. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(35):14158-14163
Weatherly L M, Shim J, Hashmi H N, et al. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes[J]. Journal of Applied Toxicology, 2016, 36(6):777-789
Anderson S E, Franko J, Kashon M L, et al. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2013, 132(1):96-106
Yueh M F, Taniguchi K, Chen S J, et al. The commonly used antimicrobial additive triclosan is a liver tumor promoter[J]. PNAS, 2014, 111(48):17200-17205
Wang B H, Yao M F, Lv L, et al. The human microbiota in health and disease[J]. Engineering, 2017, 3(1):71-82
Cani P D, Amar J, Iglesias M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7):1761-1772
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408
Mu Q H, Kirby J, Reilly C M, et al. Leaky gut as a danger signal for autoimmune diseases[J]. Frontiers in Immunology, 2017, 8:598
Yueh M F, He F, Chen C, et al. Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49):31259-31266
Hu J Z, Raikhel V, Gopalakrishnan K, et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model[J]. Microbiome, 2016, 4(1):26
Sanidad K Z, Xiao H, Zhang G D. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health[J]. Gut Microbes, 2019, 10(3):434-437
Schultz M M, Bartell S E, Schoenfuss H L. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants, on anatomy, physiology, and behavior of the fathead minnow (Pimephales promelas)[J]. Archives of Environmental Contamination and Toxicology, 2012, 63(1):114-124
Yang G C, Tsai H J, Chang F K. Occurrence of triclosan in the tropical rivers receiving the effluents from the hospital wastewater treatment plant[J]. Environmental Monitoring and Assessment, 2015, 187(3):151
Regnault C, Willison J, Veyrenc S, et al. Metabolic and immune impairments induced by the endocrine disruptors benzopyrene and triclosan in Xenopus tropicalis[J]. Chemosphere, 2016, 155:519-527
Usal M, Regnault C, Veyrenc S, et al. Concomitant exposure to benzopyrene and triclosan at environmentally relevant concentrations induces metabolic syndrome with multigenerational consequences in Silurana (Xenopus) tropicalis[J]. Science of the Total Environment, 2019, 689:149-159
Ho J C H, Hsiao C D, Kawakami K, et al. Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos[J]. Aquatic Toxicology, 2016, 173:29-35
Asgharpour A, Cazanave S C, Pacana T, et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer[J]. Journal of Hepatology, 2016, 65(3):579-588
Liang Y R, Zhan J, Liu D H, et al. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota[J]. Microbiome, 2019, 7(1):19
Chi Y L, Lin Y, Zhu H M, et al. PCBs-high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice[J]. Environmental Pollution, 2018, 239:332-341
Leung Y K, Govindarajah V, Cheong A, et al. Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk[J]. Endocrine-Related Cancer, 2017, 24(7):365-378
Österreicher C H, Trauner M. Xenobiotic-induced liver injury and fibrosis[J]. Expert Opinion on Drug Metabolism & Toxicology, 2012, 8(5):571-580
Rude K M, Pusceddu M M, Keogh C E, et al. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice[J]. Environmental Pollution, 2019, 253:708-721
Petriello M C, Hoffman J B, Vsevolozhskaya O, et al. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis[J]. Environmental Pollution, 2018, 242:1022-1032
Mahalak K K, Firrman J, Lee J J, et al. Triclosan has a robust, yet reversible impact on human gut microbial composition in vitro[J]. PLoS One, 2020, 15(6):e0234046
Rizzatti G, Lopetuso L R, Gibiino G, et al. Proteobacteria:A common factor in human diseases[J]. BioMed Research International, 2017, 2017:9351507
Sovran B, Planchais J, Jegou S, et al. Enterobacteriaceae are essential for the modulation of colitis severity by fungi[J]. Microbiome, 2018, 6(1):152
Hoyles L, Jiménez-Pranteda M L, Chilloux J, et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota[J]. Microbiome, 2018, 6(1):73
Palmela C, Chevarin C, Xu Z L, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease[J]. Gut, 2018, 67(3):574-587
Yang H X, Wang W C, Romano K A, et al. A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice[J]. Science Translational Medicine, 2018, 10(443):eaan4116
Yueh M F, Taniguchi K, Chen S J, et al. The commonly used antimicrobial additive triclosan is a liver tumor promoter[J]. PNAS, 2014, 111(48):17200-17205