基于HepG2细胞脂质组学方法对黄浦江水质的综合评价

印月, 镇华君, 修光利. 基于HepG2细胞脂质组学方法对黄浦江水质的综合评价[J]. 生态毒理学报, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002
引用本文: 印月, 镇华君, 修光利. 基于HepG2细胞脂质组学方法对黄浦江水质的综合评价[J]. 生态毒理学报, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002
Yin Yue, Zhen Huajun, Xiu Guangli. Comprehensive Evaluation of Water Quality of Huangpu River Using HepG2 Cell-based Lipidomics Approach[J]. Asian journal of ecotoxicology, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002
Citation: Yin Yue, Zhen Huajun, Xiu Guangli. Comprehensive Evaluation of Water Quality of Huangpu River Using HepG2 Cell-based Lipidomics Approach[J]. Asian journal of ecotoxicology, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002

基于HepG2细胞脂质组学方法对黄浦江水质的综合评价

    作者简介: 印月(1994-),女,硕士研究生,研究方向为环境毒理学,E-mail:yinyue0924@126.com
    通讯作者: 镇华君, E-mail: xiugl@ecust.edu.cn 修光利, E-mail: zhenhuajun@ecust.edu.cn
  • 基金项目:

    上海市浦江人才计划资助项目(20PJ1402700);国家自然科学基金项目(21707035)

  • 中图分类号: X171.5

Comprehensive Evaluation of Water Quality of Huangpu River Using HepG2 Cell-based Lipidomics Approach

    Corresponding authors: Zhen Huajun, xiugl@ecust.edu.cn ;  Xiu Guangli, zhenhuajun@ecust.edu.cn
  • Fund Project:
  • 摘要: 环境水体中复合污染的毒性识别一直是环境科学界关注的热点。基于代谢组学的生物监测方法通过监测暴露前后生物内源性代谢物的变化,在评估复合污染导致的综合毒性效应中具有广泛的应用前景。本研究从污染物对细胞脂类代谢的影响角度出发,采用体外肝癌细胞(HepG2)暴露和脂质组分析相结合的方法,对黄浦江干流和支流共27个采样点的水质进行了综合评价。研究发现,水样对HepG2细胞的脂代谢影响程度与采样点所属河段紧密相关。黄浦江中游水样对HepG2细胞的平均脂代谢影响程度(3.40%)高于上游(1.65%)和下游(0.78%),而流经城区的支流水样对细胞的脂代谢影响(5.20%)明显高于干流水样(1.80%)。此外,在采集的水样中超过70%的样品都导致HepG2细胞内甘油三酯(TG)大量蓄积,揭示了黄浦江水体中的复合污染物可能诱导肝脏产生脂毒性损伤。本研究为环境水质监测提供新的方法,研究结果为上海市生态环境和水质安全管理部门提供重要的参考信息。
  • 加载中
  • Hao X D, Chen G H, Yuan Z G. Water in China[J]. Water Research, 2020, 169:115256
    Tian Z Y, Peter K T, Gipe A D, et al. Suspect and nontarget screening for contaminants of emerging concern in an urban estuary[J]. Environmental Science & Technology, 2020, 54(2):889-901
    Han D M, Currell M J, Cao G L. Deep challenges for China's war on water pollution[J]. Environmental Pollution, 2016, 218:1222-1233
    Wang J Y, Da L J, Song K, et al. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China[J]. Environmental Pollution, 2008, 152(2):387-393
    Hartung T. Toxicology for the twenty-first century[J]. Nature, 2009, 460(7252):208-212
    Zhang L L, Li Q, Chen L, et al. Toxicity of surface water from Huangpu River to luminous bacteria (Vibrio qinghaiensis SP. Q67) and zebrafish (Danio rerio) embryos[J]. Ecotoxicology and Environmental Safety, 2015, 112:137-143
    王志浩, 彭颖, 王萍萍, 等. 基于斑马鱼毒理基因组学的化学品测试技术研究进展[J]. 生态毒理学报, 2018, 13(5):1-10

    Wang Z H, Peng Y, Wang P P, et al. Advances of chemical testing methodologies based on zebrafish toxicogenomics[J]. Asian Journal of Ecotoxicology, 2018, 13(5):1-10(in Chinese)

    Xia P, Zhang X W, Zhang H X, et al. Benchmarking water quality from wastewater to drinking waters using reduced transcriptome of human cells[J]. Environmental Science & Technology, 2017, 51(16):9318-9326
    Wang P P, Xia P, Yang J H, et al. A reduced transcriptome approach to assess environmental toxicants using zebrafish embryo test[J]. Environmental Science & Technology, 2018, 52(2):821-830
    张家敏, 彭颖, 方文迪, 等. 有害结局路径(AOP)框架在水体复合污染监测研究中的应用[J]. 生态毒理学报, 2017, 12(1):1-14

    Zhang J M, Peng Y, Fang W D, et al. Application of adverse outcome pathways framework in monitoring of toxic chemicals from aquatic environments[J]. Asian Journal of Ecotoxicology, 2017, 12(1):1-14(in Chinese)

    Yang K, Han X L. Lipidomics:Techniques, applications, and outcomes related to biomedical sciences[J]. Trends in Biochemical Sciences, 2016, 41(11):954-969
    Ibáñez C, Mouhid L, Reglero G, et al. Lipidomics insights in health and nutritional intervention studies[J]. Journal of Agricultural and Food Chemistry, 2017, 65(36):7827-7842
    Aminov Z, Haase R F, Pavuk M, et al. Analysis of the effects of exposure to polychlorinated biphenyls and chlorinated pesticides on serum lipid levels in residents of Anniston, Alabama[J]. Environmental Health, 2013, 12:108
    Lai K P, Lee J C Y, Wan H T, et al. Effects of in utero PFOS exposure on transcriptome, lipidome, and function of mouse testis[J]. Environmental Science & Technology, 2017, 51(15):8782-8794
    Zhao F R, Wan Y, Zhao H Q, et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis[J]. Environmental Science & Technology, 2016, 50(16):8896-8903
    Ortiz-Villanueva E, Navarro-Martín L, Jaumot J, et al. Metabolic disruption of zebrafish (Danio rerio) embryos by bisphenol A. An integrated metabolomic and transcriptomic approach[J]. Environmental Pollution, 2017, 231(Pt 1):22-36
    Wu K, Luo Z, Hogstrand C, et al. Zn stimulates the phospholipids biosynthesis via the pathways of oxidative and endoplasmic reticulum stress in the intestine of freshwater teleost yellow catfish[J]. Environmental Science & Technology, 2018, 52(16):9206-9214
    Jungnickel H, Potratz S, Baumann S, et al. Identification of lipidomic biomarkers for coexposure to subtoxic doses of benzopyrene and cadmium:The toxicological cascade biomarker approach[J]. Environmental Science & Technology, 2014, 48(17):10423-10431
    Zhen H J, Ekman D R, Collette T W, et al. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio rerio) liver cell-based metabolomics approach[J]. Water Research, 2018, 145:198-209
    Li Y H, Darwish W S, Chen Z, et al. Identification of lead-produced lipid hydroperoxides in human HepG2 cells and protection using rosmarinic and ascorbic acids with a reference to their regulatory roles on Nrf2-Keap1 antioxidant pathway[J]. Chemico-Biological Interactions, 2019, 314:108847
    Ye G Z, Ding D X, Gao H, et al. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure:Insights from an untargeted metabolomics[J]. Science of the Total Environment, 2019, 691:874-884
    Wang Z M, Shao D G, Westerhoff P. Wastewater discharge impact on drinking water sources along the Yangtze River (China)[J]. Science of the Total Environment, 2017, 599-600:1399-1407
    Teng Q, Ekman D R, Huang W L, et al. Impacts of 17α-ethynylestradiol exposure on metabolite profiles of zebrafish (Danio rerio) liver cells[J]. Aquatic Toxicology, 2013, 130-131:184-191
    Han X L. Lipidomics for studying metabolism[J]. Nature Reviews Endocrinology, 2016, 12(11):668-679
    Donnelly K L, Smith C I, Schwarzenberg S J, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. The Journal of Clinical Investigation, 2005, 115(5):1343-1351
    Mei X B, Sui Q, Lyu S G, et al. Pharmaceuticals and personal care products in the urban river across the megacity Shanghai:Occurrence, source apportionment and a snapshot of influence of rainfall[J]. Journal of Hazardous Materials, 2018, 359:429-436
    Sun R, Wu M H, Tang L, et al. Perfluorinated compounds in surface waters of Shanghai, China:Source analysis and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 149:88-95
    Liu S, Liu X R, Liu M, et al. Levels, sources and risk assessment of PAHs in multi-phases from urbanized river network system in Shanghai[J]. Environmental Pollution, 2016, 219:555-567
    Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828
    Ress C. Mechanisms of intrahepatic triglyceride accumulation[J]. World Journal of Gastroenterology, 2016, 22(4):1664
    McGill M R, Li F, Sharpe M R, et al. Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans[J]. Archives of Toxicology, 2014, 88(2):391-401
    Kawano Y, Cohen D E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease[J]. Journal of Gastroenterology, 2013, 48(4):434-441
    Feng S M, Gan L, Yang C S, et al. Effects of stigmasterol and β-sitosterol on nonalcoholic fatty liver disease in a mouse model:A lipidomic analysis[J]. Journal of Agricultural and Food Chemistry, 2018, 66(13):3417-3425
    Liu Y, Wang W, Shui G H, et al. CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway[J]. PLoS Genetics, 2014, 10(3):e1004172
    Gibert Y, Yoganantharajah P, McGee S, et al. Bisphenol A, but not bisphenol S, exposure increases lipid deposition by acting on the PI3K pathway in vivo[J]. The FASEB Journal, 2019, 33(S1):DOI:10.1096/fasebj.2019.33.1_supplement.488.7
    Hannun Y A, Obeid L M. Many ceramides[J]. Journal of Biological Chemistry, 2011, 286(32):27855-27862
    Nikolova-Karakashian M. Alcoholic and non-alcoholic fatty liver disease:Focus on ceramide[J]. Advances in Biological Regulation, 2018, 70:40-50
    Hu C X, Zhou Y, Feng J, et al. Untargeted lipidomics reveals specific lipid abnormalities in nonfunctioning human pituitary adenomas[J]. Journal of Proteome Research, 2020, 19(1):455-463
    Zhang H N, Shao X J, Zhao H Z, et al. Integration of metabolomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes[J]. Environmental Science & Technology, 2019, 53(9):5406-5415
  • 加载中
计量
  • 文章访问数:  1344
  • HTML全文浏览数:  1344
  • PDF下载数:  61
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-27
印月, 镇华君, 修光利. 基于HepG2细胞脂质组学方法对黄浦江水质的综合评价[J]. 生态毒理学报, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002
引用本文: 印月, 镇华君, 修光利. 基于HepG2细胞脂质组学方法对黄浦江水质的综合评价[J]. 生态毒理学报, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002
Yin Yue, Zhen Huajun, Xiu Guangli. Comprehensive Evaluation of Water Quality of Huangpu River Using HepG2 Cell-based Lipidomics Approach[J]. Asian journal of ecotoxicology, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002
Citation: Yin Yue, Zhen Huajun, Xiu Guangli. Comprehensive Evaluation of Water Quality of Huangpu River Using HepG2 Cell-based Lipidomics Approach[J]. Asian journal of ecotoxicology, 2021, 16(4): 141-150. doi: 10.7524/AJE.1673-5897.20201127002

基于HepG2细胞脂质组学方法对黄浦江水质的综合评价

    通讯作者: 镇华君, E-mail: xiugl@ecust.edu.cn ;  修光利, E-mail: zhenhuajun@ecust.edu.cn
    作者简介: 印月(1994-),女,硕士研究生,研究方向为环境毒理学,E-mail:yinyue0924@126.com
  • 1. 上海市环境保护化学污染物环境标准与风险管理重点实验室, 华东理工大学资源与环境工程学院, 上海 200237;
  • 2. 国家环境保护化工过程环境风险评价与控制重点实验室, 华东理工大学资源与环境工程学院, 上海 200237;
  • 3. 上海污染控制与生态安全研究院, 上海 200092
基金项目:

上海市浦江人才计划资助项目(20PJ1402700);国家自然科学基金项目(21707035)

摘要: 环境水体中复合污染的毒性识别一直是环境科学界关注的热点。基于代谢组学的生物监测方法通过监测暴露前后生物内源性代谢物的变化,在评估复合污染导致的综合毒性效应中具有广泛的应用前景。本研究从污染物对细胞脂类代谢的影响角度出发,采用体外肝癌细胞(HepG2)暴露和脂质组分析相结合的方法,对黄浦江干流和支流共27个采样点的水质进行了综合评价。研究发现,水样对HepG2细胞的脂代谢影响程度与采样点所属河段紧密相关。黄浦江中游水样对HepG2细胞的平均脂代谢影响程度(3.40%)高于上游(1.65%)和下游(0.78%),而流经城区的支流水样对细胞的脂代谢影响(5.20%)明显高于干流水样(1.80%)。此外,在采集的水样中超过70%的样品都导致HepG2细胞内甘油三酯(TG)大量蓄积,揭示了黄浦江水体中的复合污染物可能诱导肝脏产生脂毒性损伤。本研究为环境水质监测提供新的方法,研究结果为上海市生态环境和水质安全管理部门提供重要的参考信息。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回