除草剂对非靶标生物及人体的生殖毒性与遗传毒性研究进展

杨嘉辉, 王安, 杨秀鸿. 除草剂对非靶标生物及人体的生殖毒性与遗传毒性研究进展[J]. 生态毒理学报, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006
引用本文: 杨嘉辉, 王安, 杨秀鸿. 除草剂对非靶标生物及人体的生殖毒性与遗传毒性研究进展[J]. 生态毒理学报, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006
Yang Jiahui, Wang An, Yang Xiuhong. Reproductive Toxicity and Genotoxicity of Herbicides to Non-target Organisms and Human Beings[J]. Asian journal of ecotoxicology, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006
Citation: Yang Jiahui, Wang An, Yang Xiuhong. Reproductive Toxicity and Genotoxicity of Herbicides to Non-target Organisms and Human Beings[J]. Asian journal of ecotoxicology, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006

除草剂对非靶标生物及人体的生殖毒性与遗传毒性研究进展

    作者简介: 杨嘉辉(1995-),男,硕士研究生,研究方向为毒理学安全性评价,E-mail:otztoxin@163.com
    通讯作者: 王安, E-mail: csuwang@csu.edu.cn 杨秀鸿, E-mail: yxh502@sina.com
  • 中图分类号: X171.5

Reproductive Toxicity and Genotoxicity of Herbicides to Non-target Organisms and Human Beings

    Corresponding authors: Wang An, csuwang@csu.edu.cn ;  Yang Xiuhong, yxh502@sina.com
  • 摘要: 除草剂的应用已逐渐成为农业生产中不可或缺的一环。除草剂潜在的毒性作用对生态系统及其中生存的动物和人类存在着威胁。因此,研究除草剂的生殖和遗传毒性并选用安全的品类对于生态系统的保护是十分重要的。本文综述了多种除草剂对几种非靶标生物的生殖毒性和遗传毒性,为新型除草剂的生殖和遗传毒性评价及实验动物的选择提供参考,并为除草剂的生态毒理研究提供思路。
  • 加载中
  • Harris K A, Dangerfield N, Woudneh M, et al. Partitioning of current-use and legacy pesticides in salmon habitat in British Columbia, Canada[J]. Environmental Toxicology and Chemistry, 2008, 27(11):2253-2262
    Uren Webster T M, Laing L V, Florance H, et al. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2014, 48(2):1271-1279
    Armiliato N, Ammar D, Nezzi L, et al. Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate[J]. Journal of Toxicology and Environmental Health, Part A, 2014, 77(7):405-414
    Zhu L Z, Qi S Z, Cao F J, et al. Quizalofop-P-ethyl exposure increases estrogen axis activity in male and slightly decreases estrogen axis activity in female zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2017, 183:76-84
    Jiang J H, Chen Y H, Yu R X, et al. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development[J]. Environmental Toxicology and Pharmacology, 2016, 42:125-134
    Richter C A, Papoulias D M, Whyte J J, et al. Evaluation of potential mechanisms of atrazine-induced reproductive impairment in fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2016, 35(9):2230-2238
    Ahmadivand S, Farahmand H, Teimoori-Toolabi L, et al. Boule gene expression underpins the meiotic arrest in spermatogenesis in male rainbow trout (Oncorhynchus mykiss) exposed to DEHP and butachlor[J]. General and Comparative Endocrinology, 2016, 225:235-241
    Papoulias D M, Tillitt D E, Talykina M G, et al. Atrazine reduces reproduction in Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2014, 154:230-239
    Lopes F M, Varela Junior A S, Corcini C D, et al. Effect of glyphosate on the sperm quality of zebrafish Danio rerio[J]. Aquatic Toxicology, 2014, 155:322-326
    Anbumani S, Mohankumar M N. Cytogenotoxicity assessment of monocrotophos and butachlor at single and combined chronic exposures in the fish Catla catla (Hamilton)[J]. Environmental Science and Pollution Research, 2015, 22(7):4964-4976
    Adeyemi J A, da Cunha Martins-Junior A, Barbosa F Jr. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2015, 172-173:7-12
    Nwani C D, Nagpure N S, Kumar R, et al. Induction of micronuclei and nuclear lesions in Channa punctatus following exposure to carbosulfan, glyphosate and atrazine[J]. Drug and Chemical Toxicology, 2014, 37(4):370-377
    Piancini L D S, Guiloski I C, de Assis H C S, et al. Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species[J]. Toxicology Reports, 2015, 2:1157-1163
    Wang C X, Harwood J D, Zhang Q M. Oxidative stress and DNA damage in common carp (Cyprinus carpio) exposed to the herbicide mesotrione[J]. Chemosphere, 2018, 193:1080-1086
    Ruiz de Arcaute C, Larramendy M L, Soloneski S. Genotoxicity by long-term exposure to the auxinic herbicides 2,4-dichlorophenoxyacetic acid and dicamba on Cnesterodon decemmaculatus (Pisces:Poeciliidae)[J]. Environmental Pollution, 2018, 243(Pt A):670-678
    Somers J D, Moran E T, Reinhart B S. Reproductive success of hens and cockerels originating from eggs sprayed with 2,4-D, 2,4-5-T and picloram followed by early performance of their progeny after a comparable in ovo exposure[J]. Bulletin of Environmental Contamination and Toxicology, 1978, 20(1):111-119
    Arias E. Cytogenetic effects of short- and long-term exposure of chick embryos to the phenoxyherbicide 2,4-D[J]. Environmental and Molecular Mutagenesis, 2007, 48(6):462-466
    靳生, 王冠颖, 杜强, 等. 阿特拉津对雏鸡的急性毒性作用和骨髓微核率的影响[J]. 中国兽医杂志, 2013, 49(4):72-74

    Jin S, Wang G Y, Du Q, et al. The acute toxicity of atrazine and its effect on micronuclear rate for bone marrow cells of chicks[J]. Chinese Journal of Veterinary Medicine, 2013, 49(4):72-74(in Chinese)

    de la Casa-Resino I, Valdehita A, Soler F, et al. Endocrine disruption caused by oral administration of atrazine in European quail (Coturnix coturnix coturnix)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2012, 156(3-4):159-165
    Soni R, Haldar C, Chaturvedi C M. Paraquat induced impaired reproductive function and modulation of retinal and extra-retinal photoreceptors in Japanese quail (Coturnix coturnix japonica)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 224:108568
    李薇. 阿特拉津致鹌鹑卵巢颗粒细胞毒性机制的研究[D]. 哈尔滨:东北农业大学, 2019:31-53 Li W. Study on the mechanism of atrazine-induced cytotoxicity in quail ovarian granulosa cells[D]. Harbin:Northeast Agricultural University, 2019:31

    -53(in Chinese)

    Lajmanovich R C, Junges C M, Attademo A M, et al. Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles[J]. Water, Air, & Soil Pollution, 2013, 224(3):1-13
    林玲. 丁草胺对三种无尾两栖类蝌蚪毒理学效应的研究[D]. 福州:福建师范大学, 2010:43-61 Lin L. Toxic effects of butachlor on tadpoles of three anuran species[D]. Fuzhou:Fujian Normal University, 2010:43

    -61(in Chinese)

    叶圣涛. 几种农药对黑斑侧褶蛙和泽陆蛙的遗传毒理效应研究[D]. 金华:浙江师范大学, 2013:24-40 Ye S T. Genetic toxicological effect on Pelophylax nigromaculata and Fejervarya multistriata exposed to several pestieides[D]. Jinhua:Zhejiang Normal University, 2013:24

    -40(in Chinese)

    Liu W Y, Wang C Y, Wang T S, et al. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan[J]. Ecotoxicology, 2011, 20(2):377-384
    Jing X, Yao G J, Liu D H, et al. Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl[J]. Chemosphere, 2017, 186:832-838
    Sai L L, Qu B P, Zhang J, et al. Analysis of long non-coding RNA involved in atrazine-induced testicular degeneration of Xenopus laevis[J]. Environmental Toxicology, 2019, 34(4):505-512
    Sai L L, Li L, Hu C Y, et al. Identification of circular RNAs and their alterations involved in developing male Xenopus laevis chronically exposed to atrazine[J]. Chemosphere, 2018, 200:295-301
    Sai L L, Li Y, Zhang Y C, et al. Distinct m6A methylome profiles in poly(A) RNA from Xenopus laevis testis and that treated with atrazine[J]. Chemosphere, 2020, 245:125631
    Hayes T B, Khoury V, Narayan A, et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10):4612-4617
    Hoskins T D, Boone M D. Atrazine feminizes sex ratio in Blanchard's cricket frogs (Acris blanchardi) at concentrations as low as 0.1μg/L[J]. Environmental Toxicology and Chemistry, 2018, 37(2):427-435
    Hoskins T D, Dellapina M, Boone M D. Short-term atrazine exposure at breeding has no impact on Blanchard's cricket frog (Acris blanchardi) reproductive success[J]. Environmental Toxicology and Chemistry, 2017, 36(12):3284-3288
    Gonçalves M W, Marins de Campos C B, Batista V G, et al. Genotoxic and mutagenic effects of atrazine Atanor 50 SC on Dendropsophus minutus Peters, 1872(Anura:Hylidae) developmental larval stages[J]. Chemosphere, 2017, 182:730-737
    Vonier P M, Crain D A, McLachlan J A, et al. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator[J]. Environmental Health Perspectives, 1996, 104(12):1318-1322
    Bicho R C, Amaral M J, Faustino A M, et al. Thyroid disruption in the lizard Podarcis bocagei exposed to a mixture of herbicides:A field study[J]. Ecotoxicology, 2013, 22(1):156-165
    Schaumburg L G, Siroski P A, Poletta G L, et al. Genotoxicity induced by Roundup® (glyphosate) in tegu lizard (Salvator merianae) embryos[J]. Pesticide Biochemistry and Physiology, 2016, 130:71-78
    Burella P M, Simoniello M F, Poletta G L. Evaluation of stage-dependent genotoxic effect of roundup® (glyphosate) on Caiman latirostris embryos[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1):50-57
    蔡小宇, 姜锦林, 单正军, 等. 草甘膦对大型溞的急性和慢性毒性效应研究[J]. 农业环境科学学报, 2016, 35(10):1903-1908

    Cai X Y, Jiang J L, Shan Z J, et al. Acute and chronic toxicity of glyphosate to Daphnia magna[J]. Journal of Agro-Environment Science, 2016, 35(10):1903-1908(in Chinese)

    彭微, 李佳, 袁玲. 草甘膦与氰氟草酯对隆线溞的慢性生殖毒性研究[J]. 环境科学与技术, 2019, 42(7):57-63

    Peng W, Li J, Yuan L. Chronic toxicity of glyphosate and cyhalofop-butyl to reproduction of Daphnia carinata[J]. Environmental Science & Technology, 2019, 42(7):57-63(in Chinese)

    Canosa I S, Zanitti M, Lonné N, et al. Imbalances in the male reproductive function of the estuarine crab Neohelice granulata, caused by glyphosate[J]. Ecotoxicology and Environmental Safety, 2019, 182:109405
    王海玲. 莠去津对河蟹精子酶活性、DNA完整性及组蛋白表达的影响[D]. 保定:河北大学, 2015:18-43 Wang H L. Effects on the sperm enzyme activity, DNA integrity and histone expression of Eriocheir sinensis by atrazine exposure[D]. Baoding:Hebei University, 2015:18

    -43(in Chinese)

    朱杰. 莠去津对中华绒螯蟹生精细胞DNA和减数分裂的影响[D]. 保定:河北大学, 2018:22-59 Zhu J. Effect of atrazine on DNA and meiosis in spermatogenic cells of Eriocheir sinensis[D]. Baoding:Hebei University, 2018:22

    -59(in Chinese)

    刘欢. 莠去津对中华绒螯蟹生精细胞的影响[D]. 保定:河北大学, 2016:19-52 Liu H. Effects on the spermatogenic cells of Eriocheir sinensis by atrazine exposure[D]. Baoding:Hebei University, 2016:19

    -52(in Chinese)

    穆淑梅. 莠去津对中华绒螯蟹生长发育的毒性影响[D]. 保定:河北大学, 2011:35-76 Mu S M. Adverse effects of atrazine on the growth and development of Eriocheir sinensis[D]. Baoding:Hebei University, 2011:35

    -76(in Chinese)

    张晗, 沈丹丹, 穆淑梅, 等. 莠去津对雌性日本沼虾的毒性作用[J]. 河北大学学报:自然科学版, 2010, 30(6):701-705

    Zhang H, Shen D D, Mu S M, et al. Toxic effect of atrazine on female Macrobrachium nipponense[J]. Journal of Hebei University:Natural Science Edition, 2010, 30(6):701-705(in Chinese)

    Druart C, Gimbert F, Scheifler R, et al. A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption[J]. Environmental Pollution, 2017, 226:240-249
    Wilson A L, Stevens M M, Watts R J. Acute and chronic toxicity of the herbicide benzofenap (Taipan 300) to Chironomus tepperi Skuse (Diptera:Chironomidae) and Isidorella newcombi (Adams and Angas) (Gastropoda:Planorbidae)[J]. Archives of Environmental Contamination and Toxicology, 2000, 38(2):176-181
    Baurand P E, Capelli N, de Vaufleury A. Genotoxicity assessment of pesticides on terrestrial snail embryos by analysis of random amplified polymorphic DNA profiles[J]. Journal of Hazardous Materials, 2015, 298:320-327
    Mai H, Cachot J, Brune J, et al. Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas)[J]. Marine Pollution Bulletin, 2012, 64(12):2663-2670
    Mai H, Gonzalez P, Pardon P, et al. Comparative responses of sperm cells and embryos of Pacific oyster (Crassostrea gigas) to exposure to metolachlor and its degradation products[J]. Aquatic Toxicology, 2014, 147:48-56
    Mantecca P, Vailati G, Bacchetta R. Histological changes and micronucleus induction in the zebra mussel Dreissena polymorpha after paraquat exposure[J]. Histology and Histopathology, 2006, 21(8):829-840
    Thakuria D, Schmidt O, Finan D, et al. Gut wall bacteria of earthworms:A natural selection process[J]. The ISME Journal, 2010, 4(3):357-366
    Li X Y, Zhu L S, Du Z K, et al. Mesotrione-induced oxidative stress and DNA damage in earthworms (Eisenia fetida)[J]. Ecological Indicators, 2018, 95:436-443
    Hackenberger D K, Stjepanovi N, Lonari Ž, et al. Acute and subchronic effects of three herbicides on biomarkers and reproduction in earthworm Dendrobaena veneta[J]. Chemosphere, 2018, 208:722-730
    Muangphra P, Kwankua W, Gooneratne R. Genotoxic effects of glyphosate or paraquat on earthworm coelomocytes[J]. Environmental Toxicology, 2014, 29(6):612-620
    Huguier P, Manier N, Méline C, et al. Improvement of the Caenorhabditis elegans growth and reproduction test to assess the ecotoxicity of soils and complex matrices[J]. Environmental Toxicology and Chemistry, 2013, 32(9):2100-2108
    Wang Y B, Ezemaduka A N, Li Z H, et al. Joint toxicity of arsenic, copper and glyphosate on behavior, reproduction and heat shock protein response in Caenorhabditis elegans[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(4):465-471
    Zhang J N, Liang W J, Wu X, et al. Toxic effects of acetochlor on mortality, reproduction and growth of Caenorhabditis elegans and Pristionchus pacificus[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(3):364-368
    Paz-Y-miño C, Sánchez M E, Arévalo M, et al. Evaluation of DNA damage in an Ecuadorian population exposed to glyphosate[J]. Genetics and Molecular Biology, 2007, 30(2):456-460
    Garaj-Vrhovac V, Zeljezic D. Assessment of genome damage in a population of Croatian workers employed in pesticide production by chromosomal aberration analysis, micronucleus assay and Comet assay[J]. Journal of Applied Toxicology, 2002, 22(4):249-255
    Barrón Cuenca J, Tirado N, Barral J, et al. Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides[J]. Science of the Total Environment, 2019, 695:133942
    Al-Hussaini T K, Abdelaleem A A, Elnashar I, et al. The effect of follicullar fluid pesticides and polychlorinated biphenyls concentrations on intracytoplasmic sperm injection (ICSI) embryological and clinical outcome[J]. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 2018, 220:39-43
    Swan S H, Kruse R L, Liu F, et al. Semen quality in relation to biomarkers of pesticide exposure[J]. Environmental Health Perspectives, 2003, 111(12):1478-1484
    Lerda D, Rizzi R. Study of reproductive function in persons occupationally exposed to 2,4-dichlorophenoxyacetic acid (2,4-D)[J]. Mutation Research, 1991, 262(1):47-50
    Tan Z Y, Zhou J, Chen H Y, et al. Toxic effects of 2,4-dichlorophenoxyacetic acid on human sperm function in vitro[J]. The Journal of Toxicological Sciences, 2016, 41(4):543-549
    孙雪照, 谈立峰, 李燕南, 等. 职业性接触乙草胺农药对男工精液质量的影响[J]. 中国工业医学杂志, 2006, 19(1):1-3

    , 6 Sun X Z, Tan L F, Li Y N, et al. Effects of acetochlor exposure on the semen quality of occupational workers[J]. Chinese Journal of Industrial Medicine, 2006, 19(1):1-3, 6(in Chinese)

    Tomenson J A, Taves D R, Cockett A T, et al. An assessment of fertility in male workers exposed to molinate[J]. Journal of Occupational and Environmental Medicine, 1999, 41(9):771-787
    Ueker M E, Silva V M, Moi G P, et al. Parenteral exposure to pesticides and occurence of congenital malformations:Hospital-based case-control study[J]. BMC Pediatrics, 2016, 16(1):125
    Meyer K J, Reif J S, Veeramachaneni D N, et al. Agricultural pesticide use and hypospadias in eastern Arkansas[J]. Environmental Health Perspectives, 2006, 114(10):1589-1595
    Arbuckle T E, Lin Z, Mery L S. An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population[J]. Environmental Health Perspectives, 2001, 109(8):851-857
    Weselak M, Arbuckle T E, Wigle D T, et al. Pre- and post-conception pesticide exposure and the risk of birth defects in an Ontario farm population[J]. Reproductive Toxicology, 2008, 25(4):472-480
  • 加载中
计量
  • 文章访问数:  2532
  • HTML全文浏览数:  2532
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-30
杨嘉辉, 王安, 杨秀鸿. 除草剂对非靶标生物及人体的生殖毒性与遗传毒性研究进展[J]. 生态毒理学报, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006
引用本文: 杨嘉辉, 王安, 杨秀鸿. 除草剂对非靶标生物及人体的生殖毒性与遗传毒性研究进展[J]. 生态毒理学报, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006
Yang Jiahui, Wang An, Yang Xiuhong. Reproductive Toxicity and Genotoxicity of Herbicides to Non-target Organisms and Human Beings[J]. Asian journal of ecotoxicology, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006
Citation: Yang Jiahui, Wang An, Yang Xiuhong. Reproductive Toxicity and Genotoxicity of Herbicides to Non-target Organisms and Human Beings[J]. Asian journal of ecotoxicology, 2021, 16(4): 119-130. doi: 10.7524/AJE.1673-5897.20200930006

除草剂对非靶标生物及人体的生殖毒性与遗传毒性研究进展

    通讯作者: 王安, E-mail: csuwang@csu.edu.cn ;  杨秀鸿, E-mail: yxh502@sina.com
    作者简介: 杨嘉辉(1995-),男,硕士研究生,研究方向为毒理学安全性评价,E-mail:otztoxin@163.com
  • 1. 中南大学湘雅公共卫生学院卫生毒理学系, 长沙 410078;
  • 2. 湖南省职业病防治院毒理实验室, 长沙 410007

摘要: 除草剂的应用已逐渐成为农业生产中不可或缺的一环。除草剂潜在的毒性作用对生态系统及其中生存的动物和人类存在着威胁。因此,研究除草剂的生殖和遗传毒性并选用安全的品类对于生态系统的保护是十分重要的。本文综述了多种除草剂对几种非靶标生物的生殖毒性和遗传毒性,为新型除草剂的生殖和遗传毒性评价及实验动物的选择提供参考,并为除草剂的生态毒理研究提供思路。

English Abstract

参考文献 (71)

返回顶部

目录

/

返回文章
返回