Harris K A, Dangerfield N, Woudneh M, et al. Partitioning of current-use and legacy pesticides in salmon habitat in British Columbia, Canada[J]. Environmental Toxicology and Chemistry, 2008, 27(11):2253-2262
Uren Webster T M, Laing L V, Florance H, et al. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2014, 48(2):1271-1279
Armiliato N, Ammar D, Nezzi L, et al. Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate[J]. Journal of Toxicology and Environmental Health, Part A, 2014, 77(7):405-414
Zhu L Z, Qi S Z, Cao F J, et al. Quizalofop-P-ethyl exposure increases estrogen axis activity in male and slightly decreases estrogen axis activity in female zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2017, 183:76-84
Jiang J H, Chen Y H, Yu R X, et al. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development[J]. Environmental Toxicology and Pharmacology, 2016, 42:125-134
Richter C A, Papoulias D M, Whyte J J, et al. Evaluation of potential mechanisms of atrazine-induced reproductive impairment in fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2016, 35(9):2230-2238
Ahmadivand S, Farahmand H, Teimoori-Toolabi L, et al. Boule gene expression underpins the meiotic arrest in spermatogenesis in male rainbow trout (Oncorhynchus mykiss) exposed to DEHP and butachlor[J]. General and Comparative Endocrinology, 2016, 225:235-241
Papoulias D M, Tillitt D E, Talykina M G, et al. Atrazine reduces reproduction in Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2014, 154:230-239
Lopes F M, Varela Junior A S, Corcini C D, et al. Effect of glyphosate on the sperm quality of zebrafish Danio rerio[J]. Aquatic Toxicology, 2014, 155:322-326
Anbumani S, Mohankumar M N. Cytogenotoxicity assessment of monocrotophos and butachlor at single and combined chronic exposures in the fish Catla catla (Hamilton)[J]. Environmental Science and Pollution Research, 2015, 22(7):4964-4976
Adeyemi J A, da Cunha Martins-Junior A, Barbosa F Jr. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2015, 172-173:7-12
Nwani C D, Nagpure N S, Kumar R, et al. Induction of micronuclei and nuclear lesions in Channa punctatus following exposure to carbosulfan, glyphosate and atrazine[J]. Drug and Chemical Toxicology, 2014, 37(4):370-377
Piancini L D S, Guiloski I C, de Assis H C S, et al. Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species[J]. Toxicology Reports, 2015, 2:1157-1163
Wang C X, Harwood J D, Zhang Q M. Oxidative stress and DNA damage in common carp (Cyprinus carpio) exposed to the herbicide mesotrione[J]. Chemosphere, 2018, 193:1080-1086
Ruiz de Arcaute C, Larramendy M L, Soloneski S. Genotoxicity by long-term exposure to the auxinic herbicides 2,4-dichlorophenoxyacetic acid and dicamba on Cnesterodon decemmaculatus (Pisces:Poeciliidae)[J]. Environmental Pollution, 2018, 243(Pt A):670-678
Somers J D, Moran E T, Reinhart B S. Reproductive success of hens and cockerels originating from eggs sprayed with 2,4-D, 2,4-5-T and picloram followed by early performance of their progeny after a comparable in ovo exposure[J]. Bulletin of Environmental Contamination and Toxicology, 1978, 20(1):111-119
Arias E. Cytogenetic effects of short- and long-term exposure of chick embryos to the phenoxyherbicide 2,4-D[J]. Environmental and Molecular Mutagenesis, 2007, 48(6):462-466
靳生, 王冠颖, 杜强, 等. 阿特拉津对雏鸡的急性毒性作用和骨髓微核率的影响[J]. 中国兽医杂志, 2013, 49(4):72-74 Jin S, Wang G Y, Du Q, et al. The acute toxicity of atrazine and its effect on micronuclear rate for bone marrow cells of chicks[J]. Chinese Journal of Veterinary Medicine, 2013, 49(4):72-74(in Chinese)
de la Casa-Resino I, Valdehita A, Soler F, et al. Endocrine disruption caused by oral administration of atrazine in European quail (Coturnix coturnix coturnix)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2012, 156(3-4):159-165
Soni R, Haldar C, Chaturvedi C M. Paraquat induced impaired reproductive function and modulation of retinal and extra-retinal photoreceptors in Japanese quail (Coturnix coturnix japonica)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 224:108568
李薇. 阿特拉津致鹌鹑卵巢颗粒细胞毒性机制的研究[D]. 哈尔滨:东北农业大学, 2019:31-53 Li W. Study on the mechanism of atrazine-induced cytotoxicity in quail ovarian granulosa cells[D]. Harbin:Northeast Agricultural University, 2019:31 -53(in Chinese)
Lajmanovich R C, Junges C M, Attademo A M, et al. Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles[J]. Water, Air, & Soil Pollution, 2013, 224(3):1-13
林玲. 丁草胺对三种无尾两栖类蝌蚪毒理学效应的研究[D]. 福州:福建师范大学, 2010:43-61 Lin L. Toxic effects of butachlor on tadpoles of three anuran species[D]. Fuzhou:Fujian Normal University, 2010:43 -61(in Chinese)
叶圣涛. 几种农药对黑斑侧褶蛙和泽陆蛙的遗传毒理效应研究[D]. 金华:浙江师范大学, 2013:24-40 Ye S T. Genetic toxicological effect on Pelophylax nigromaculata and Fejervarya multistriata exposed to several pestieides[D]. Jinhua:Zhejiang Normal University, 2013:24 -40(in Chinese)
Liu W Y, Wang C Y, Wang T S, et al. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan[J]. Ecotoxicology, 2011, 20(2):377-384
Jing X, Yao G J, Liu D H, et al. Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl[J]. Chemosphere, 2017, 186:832-838
Sai L L, Qu B P, Zhang J, et al. Analysis of long non-coding RNA involved in atrazine-induced testicular degeneration of Xenopus laevis[J]. Environmental Toxicology, 2019, 34(4):505-512
Sai L L, Li L, Hu C Y, et al. Identification of circular RNAs and their alterations involved in developing male Xenopus laevis chronically exposed to atrazine[J]. Chemosphere, 2018, 200:295-301
Sai L L, Li Y, Zhang Y C, et al. Distinct m6A methylome profiles in poly(A) RNA from Xenopus laevis testis and that treated with atrazine[J]. Chemosphere, 2020, 245:125631
Hayes T B, Khoury V, Narayan A, et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10):4612-4617
Hoskins T D, Boone M D. Atrazine feminizes sex ratio in Blanchard's cricket frogs (Acris blanchardi) at concentrations as low as 0.1μg/L[J]. Environmental Toxicology and Chemistry, 2018, 37(2):427-435
Hoskins T D, Dellapina M, Boone M D. Short-term atrazine exposure at breeding has no impact on Blanchard's cricket frog (Acris blanchardi) reproductive success[J]. Environmental Toxicology and Chemistry, 2017, 36(12):3284-3288
Gonçalves M W, Marins de Campos C B, Batista V G, et al. Genotoxic and mutagenic effects of atrazine Atanor 50 SC on Dendropsophus minutus Peters, 1872(Anura:Hylidae) developmental larval stages[J]. Chemosphere, 2017, 182:730-737
Vonier P M, Crain D A, McLachlan J A, et al. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator[J]. Environmental Health Perspectives, 1996, 104(12):1318-1322
Bicho R C, Amaral M J, Faustino A M, et al. Thyroid disruption in the lizard Podarcis bocagei exposed to a mixture of herbicides:A field study[J]. Ecotoxicology, 2013, 22(1):156-165
Schaumburg L G, Siroski P A, Poletta G L, et al. Genotoxicity induced by Roundup® (glyphosate) in tegu lizard (Salvator merianae) embryos[J]. Pesticide Biochemistry and Physiology, 2016, 130:71-78
Burella P M, Simoniello M F, Poletta G L. Evaluation of stage-dependent genotoxic effect of roundup® (glyphosate) on Caiman latirostris embryos[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1):50-57
蔡小宇, 姜锦林, 单正军, 等. 草甘膦对大型溞的急性和慢性毒性效应研究[J]. 农业环境科学学报, 2016, 35(10):1903-1908 Cai X Y, Jiang J L, Shan Z J, et al. Acute and chronic toxicity of glyphosate to Daphnia magna[J]. Journal of Agro-Environment Science, 2016, 35(10):1903-1908(in Chinese)
彭微, 李佳, 袁玲. 草甘膦与氰氟草酯对隆线溞的慢性生殖毒性研究[J]. 环境科学与技术, 2019, 42(7):57-63 Peng W, Li J, Yuan L. Chronic toxicity of glyphosate and cyhalofop-butyl to reproduction of Daphnia carinata[J]. Environmental Science & Technology, 2019, 42(7):57-63(in Chinese)
Canosa I S, Zanitti M, Lonné N, et al. Imbalances in the male reproductive function of the estuarine crab Neohelice granulata, caused by glyphosate[J]. Ecotoxicology and Environmental Safety, 2019, 182:109405
王海玲. 莠去津对河蟹精子酶活性、DNA完整性及组蛋白表达的影响[D]. 保定:河北大学, 2015:18-43 Wang H L. Effects on the sperm enzyme activity, DNA integrity and histone expression of Eriocheir sinensis by atrazine exposure[D]. Baoding:Hebei University, 2015:18 -43(in Chinese)
朱杰. 莠去津对中华绒螯蟹生精细胞DNA和减数分裂的影响[D]. 保定:河北大学, 2018:22-59 Zhu J. Effect of atrazine on DNA and meiosis in spermatogenic cells of Eriocheir sinensis[D]. Baoding:Hebei University, 2018:22 -59(in Chinese)
刘欢. 莠去津对中华绒螯蟹生精细胞的影响[D]. 保定:河北大学, 2016:19-52 Liu H. Effects on the spermatogenic cells of Eriocheir sinensis by atrazine exposure[D]. Baoding:Hebei University, 2016:19 -52(in Chinese)
穆淑梅. 莠去津对中华绒螯蟹生长发育的毒性影响[D]. 保定:河北大学, 2011:35-76 Mu S M. Adverse effects of atrazine on the growth and development of Eriocheir sinensis[D]. Baoding:Hebei University, 2011:35 -76(in Chinese)
张晗, 沈丹丹, 穆淑梅, 等. 莠去津对雌性日本沼虾的毒性作用[J]. 河北大学学报:自然科学版, 2010, 30(6):701-705 Zhang H, Shen D D, Mu S M, et al. Toxic effect of atrazine on female Macrobrachium nipponense[J]. Journal of Hebei University:Natural Science Edition, 2010, 30(6):701-705(in Chinese)
Druart C, Gimbert F, Scheifler R, et al. A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption[J]. Environmental Pollution, 2017, 226:240-249
Wilson A L, Stevens M M, Watts R J. Acute and chronic toxicity of the herbicide benzofenap (Taipan 300) to Chironomus tepperi Skuse (Diptera:Chironomidae) and Isidorella newcombi (Adams and Angas) (Gastropoda:Planorbidae)[J]. Archives of Environmental Contamination and Toxicology, 2000, 38(2):176-181
Baurand P E, Capelli N, de Vaufleury A. Genotoxicity assessment of pesticides on terrestrial snail embryos by analysis of random amplified polymorphic DNA profiles[J]. Journal of Hazardous Materials, 2015, 298:320-327
Mai H, Cachot J, Brune J, et al. Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas)[J]. Marine Pollution Bulletin, 2012, 64(12):2663-2670
Mai H, Gonzalez P, Pardon P, et al. Comparative responses of sperm cells and embryos of Pacific oyster (Crassostrea gigas) to exposure to metolachlor and its degradation products[J]. Aquatic Toxicology, 2014, 147:48-56
Mantecca P, Vailati G, Bacchetta R. Histological changes and micronucleus induction in the zebra mussel Dreissena polymorpha after paraquat exposure[J]. Histology and Histopathology, 2006, 21(8):829-840
Thakuria D, Schmidt O, Finan D, et al. Gut wall bacteria of earthworms:A natural selection process[J]. The ISME Journal, 2010, 4(3):357-366
Li X Y, Zhu L S, Du Z K, et al. Mesotrione-induced oxidative stress and DNA damage in earthworms (Eisenia fetida)[J]. Ecological Indicators, 2018, 95:436-443
Hackenberger D K, Stjepanovi N, Lonari Ž, et al. Acute and subchronic effects of three herbicides on biomarkers and reproduction in earthworm Dendrobaena veneta[J]. Chemosphere, 2018, 208:722-730
Muangphra P, Kwankua W, Gooneratne R. Genotoxic effects of glyphosate or paraquat on earthworm coelomocytes[J]. Environmental Toxicology, 2014, 29(6):612-620
Huguier P, Manier N, Méline C, et al. Improvement of the Caenorhabditis elegans growth and reproduction test to assess the ecotoxicity of soils and complex matrices[J]. Environmental Toxicology and Chemistry, 2013, 32(9):2100-2108
Wang Y B, Ezemaduka A N, Li Z H, et al. Joint toxicity of arsenic, copper and glyphosate on behavior, reproduction and heat shock protein response in Caenorhabditis elegans[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(4):465-471
Zhang J N, Liang W J, Wu X, et al. Toxic effects of acetochlor on mortality, reproduction and growth of Caenorhabditis elegans and Pristionchus pacificus[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(3):364-368
Paz-Y-miño C, Sánchez M E, Arévalo M, et al. Evaluation of DNA damage in an Ecuadorian population exposed to glyphosate[J]. Genetics and Molecular Biology, 2007, 30(2):456-460
Garaj-Vrhovac V, Zeljezic D. Assessment of genome damage in a population of Croatian workers employed in pesticide production by chromosomal aberration analysis, micronucleus assay and Comet assay[J]. Journal of Applied Toxicology, 2002, 22(4):249-255
Barrón Cuenca J, Tirado N, Barral J, et al. Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides[J]. Science of the Total Environment, 2019, 695:133942
Al-Hussaini T K, Abdelaleem A A, Elnashar I, et al. The effect of follicullar fluid pesticides and polychlorinated biphenyls concentrations on intracytoplasmic sperm injection (ICSI) embryological and clinical outcome[J]. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 2018, 220:39-43
Swan S H, Kruse R L, Liu F, et al. Semen quality in relation to biomarkers of pesticide exposure[J]. Environmental Health Perspectives, 2003, 111(12):1478-1484
Lerda D, Rizzi R. Study of reproductive function in persons occupationally exposed to 2,4-dichlorophenoxyacetic acid (2,4-D)[J]. Mutation Research, 1991, 262(1):47-50
Tan Z Y, Zhou J, Chen H Y, et al. Toxic effects of 2,4-dichlorophenoxyacetic acid on human sperm function in vitro[J]. The Journal of Toxicological Sciences, 2016, 41(4):543-549
孙雪照, 谈立峰, 李燕南, 等. 职业性接触乙草胺农药对男工精液质量的影响[J]. 中国工业医学杂志, 2006, 19(1):1-3 , 6 Sun X Z, Tan L F, Li Y N, et al. Effects of acetochlor exposure on the semen quality of occupational workers[J]. Chinese Journal of Industrial Medicine, 2006, 19(1):1-3, 6(in Chinese)
Tomenson J A, Taves D R, Cockett A T, et al. An assessment of fertility in male workers exposed to molinate[J]. Journal of Occupational and Environmental Medicine, 1999, 41(9):771-787
Ueker M E, Silva V M, Moi G P, et al. Parenteral exposure to pesticides and occurence of congenital malformations:Hospital-based case-control study[J]. BMC Pediatrics, 2016, 16(1):125
Meyer K J, Reif J S, Veeramachaneni D N, et al. Agricultural pesticide use and hypospadias in eastern Arkansas[J]. Environmental Health Perspectives, 2006, 114(10):1589-1595
Arbuckle T E, Lin Z, Mery L S. An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population[J]. Environmental Health Perspectives, 2001, 109(8):851-857
Weselak M, Arbuckle T E, Wigle D T, et al. Pre- and post-conception pesticide exposure and the risk of birth defects in an Ontario farm population[J]. Reproductive Toxicology, 2008, 25(4):472-480