草甘膦对苦草种子萌发及幼苗生长的影响
Effects of Glyphosate on Germination and Growth of Vallisneria natans
-
摘要: 草甘膦除草剂在农业生产中应用较广,对水生生态系统存在潜在风险。为探究草甘膦对沉水植物的毒性效应,以苦草种子为受试对象,设置1个对照组和7个草甘膦(0.05、0.20、0.80、3.20、12.80、51.20和204.80 mg·L-1)处理组,进行静态水培试验。结果表明,草甘膦可刺激苦草种子萌发,其中51.20 mg·L-1处理组发芽率显著高于对照组(P<0.05)。0.05~3.20 mg·L-1草甘膦处理对苦草幼苗叶长和鲜质量有促进作用。12.80~204.80 mg·L-1草甘膦处理可抑制苦草生长,影响幼苗存活率。草甘膦对幼苗根长、叶长和鲜质量的21 d半数抑制浓度分别为13.28、25.57和35.53 mg·L-1。51.20 mg·L-1和204.80 mg·L-1草甘膦处理组幼苗成活率显著低于对照组(P<0.05)。0.05~12.80 mg·L-1草甘膦处理对苦草幼苗可溶性蛋白质含量无显著影响,未引起幼苗总超氧化物歧化酶、过氧化氢酶、过氧化物酶活性和丙二醛含量的显著升高,对叶绿体色素含量有低促高抑现象,其中12.8 mg·L-1处理组幼苗叶绿素a含量显著低于对照组(P<0.05)。研究表明,草甘膦可刺激苦草种子萌发,对苦草生长及叶绿体色素含量存在低剂量促进、高剂量抑制的毒物兴奋效应,在一定程度上,苦草可通过生理调节缓解草甘膦胁迫。研究为评估草甘膦对沉水植物毒性和水生态风险提供参考。Abstract: Glyphosate herbicide, which has potential risks to aquatic ecosystem, is widely used in agricultural production. To explore the toxic effects of glyphosate on submerged plants, a static hydroponic experiment was designed taken seeds of Vallisneria natans as sample, which included eight groups (0, 0.05, 0.20, 0.80, 3.20, 12.80, 51.20, 204.80 mg·L-1 glyphosate). The results indicated that glyphosate promote germination of Vallisneria natans seed, wherein the germination rate significantly increased at 51.20 mg·L-1 compared with blank control (P<0.05). The leaf length and fresh weight of Vallisneria natans seedlings also increased among 0.05~3.20 mg·L-1. However, the growth and survival rate were suppressed when the concentration was above 12.80 mg·L-1. The median inhibitory concentrations on growth of root and leaf, and increase of seedling fresh weight, were 13.28, 25.57 and 35.53 mg·L-1, respectively. Besides, the survival rate of seedling significantly decreased at 51.20 mg·L-1 and 204.80 mg·L-1 compared with blank control (P<0.05). The pigment content in chloroplast was promoted at low concentration of glyphosate, and inhibited at higher concentration, e.g., 12.8 mg·L-1 glyphosate inhibited chlorophyll a content compared with the control. Content of soluble protein, total superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and malondialdehyde (MDA) did not significantly change among 0.05~12.80 mg·L-1 (P<0.05). In a whole, glyphosate could promote germination of Vallisneria natans, and had hormesis on growth rate and chloroplast pigment content, which might alleviate glyphosate stress under Vallisneria natans via physiological regulation. This study provides a reference for assessment of glyphosate toxicity to submerged plant and risk to aquatic ecology.
-
Key words:
- glyphosate /
- Vallisneria natans /
- germination rate /
- growth inhibition /
- hormesis
-
-
杨登友, 李克才, 叶小富, 等. 除草剂可杀灭河道水葫芦[J]. 新农村, 2003(9):10 辛华荣. 草甘膦灭除行洪河道芦苇障碍浅析[J]. 江苏水利科技, 1994(2):57-59 张石云, 宋超, 张敬卫, 等. 哈尼梯田稻鱼共作系统中除草剂的污染特征[J]. 环境科学与技术, 2018, 41(S1):184-192 Zhang S Y, Song C, Zhang J W, et al. Occurrence of herbicides in rice fish system at Honghe Hani Terrace fields[J]. Environmental Science& Technology, 2018, 41(S1):184-192(in Chinese)
范瑾煜. 水环境中低浓度草甘膦及制剂对鲫鱼的毒性效应研究[D]. 南京:南京大学, 2013:54-56 Fan J Y. The toxicological effects of low concentration of glyphosate and its Roundup formulation in aquatic environment on Carassius auratus[D]. Nanjing:Nanjing University, 2013:54 -56(in Chinese)
王静, 刘铮铮, 许行义, 等. 浙江省饮用水源有机毒物污染特征及健康风险研究[J]. 环境污染与防治, 2010, 32(7):29-33 Wang J, Liu Z Z, Xu X Y, et al. Study on pollution pattern and health risk of organic toxicants in Zhejiang source water[J]. Environmental Pollution& Control, 2010, 32(7):29-33(in Chinese)
Gutierrez M F, Battauz Y, Caisso B. Disruption of the hatching dynamics of zooplankton egg banks due to glyphosate application[J]. Chemosphere, 2017, 171:644-653 Hansen L R, Roslev P. Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes[J]. Aquatic Toxicology, 2016, 179:36-43 Smith C M, Vera M K M, Bhandari R K. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2019, 210:215-226 Sikorski Ł, Baciak M, Bęś A, et al. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species[J]. Aquatic Toxicology, 2019, 209:70-80 Yu H W, Peng J F, Cao X F, et al. Effects of microplastics and glyphosate on growth rate, morphological plasticity, photosynthesis, and oxidative stress in the aquatic species Salvinia cucullata[J]. Environmental Pollution, 2021, 279:116900 张哲, 王江涛, 谭丽菊. 草甘膦对旋链角毛藻和盐生杜氏藻的毒性兴奋效应[J]. 生态毒理学报, 2010, 5(5):685-691 Zhang Z, Wang J T, Tan L J. Stimulation effect of glyphosate on Chaetoceros curvisetus and Dunallelia salina[J]. Asian Journal of Ecotoxicology, 2010, 5(5):685-691(in Chinese)
沈路遥, 彭自然, 戴智. 草甘膦水生生物毒性、环境行为、检测方法研究进展[J]. 农药, 2020, 59(1):6-10 , 33 Shen L Y, Peng Z R, Dai Z. Advances in aquatic biotoxicity, environmental behavior and detection of glyphosate[J]. Agrochemicals, 2020, 59(1):6-10, 33(in Chinese)
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化学农药环境安全评价试验准则第14部分:藻类生长抑制试验:GB/T 31270.14-2014[S]. 北京:中国标准出版社, 2014 State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of the People's Republic of China. Test Guidelines on Environmental Safety Assessment for Chemical Pesticides-Part14:Alga Growth Inhibition Test:GB/T 31270.14 -2014[S]. Beijing:Standards Press of China, 2014(in Chinese)
林静雯, 李莹, 罗洁文, 等. 草甘膦对杉木种子萌发及幼苗生长的毒性效应[J]. 江西农业大学学报, 2015, 37(5):843-848 , 858 Lin J W, Li Y, Luo J W, et al. Toxic effect of glyphosate on seed germination and seedling growth of Chinese fir[J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(5):843-848, 858(in Chinese)
刘念. 草甘膦和铜单一及联合胁迫对漂浮植物槐叶萍的毒性效应研究[D]. 武汉:武汉大学, 2019:11 Liu N. Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia natans[D]. Wuhan:Wuhan University, 2019:11(in Chinese) 张治安, 陈展宇. 植物生理学实验技术[M]. 长春:吉林大学出版社, 2008:110-111 易冕, 张饮江, 董悦, 等. 3种沉水植物对镉的生理特性响应[J]. 安全与环境学报, 2013, 13(1):9-14 Yi M, Zhang Y J, Dong Y, et al. Physiological response of the three submerged macrophytes to the five cadmium concentrations[J]. Journal of Safety and Environment, 2013, 13(1):9-14(in Chinese)
何增耀, 叶兆杰, 吴方正, 等. 农业环境科学概论[M]. 上海:上海科学技术出版社, 1991:435 Gomes M P, Juneau P. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate:Is the mitochondrial electron transport chain a target of this herbicide?[J]. Environmental Pollution, 2016, 218:402-409 潘瑞炽. 植物生理学[M]. 7版. 北京:高等教育出版社, 2012:237-323 文景锜, 陈仕勇, 柏晓玲, 等. H2O2处理对3种高寒燕麦种子萌发和幼苗生长的影响[J]. 种子, 2020, 39(10):86-88 , 93 Wen J Q, Chen S Y, Bai X L, et al. Effects of H2O2 treatment on seed germination and seedling growth of three kinds of alpine oat[J]. Seed, 2020, 39(10):86-88, 93(in Chinese)
强妮花, 惠伟. 活性氮、活性氧及植物激素在种子休眠解除中的作用及相互关系研究进展[J]. 植物生理学报, 2011, 47(7):655-660 Qiang N H, Hui W. Research progress on the role and correlations of reactive nitrogen species (RNS), reactive oxygen species(ROS) and plant hormones in seed dormancy[J]. Plant Physiology Journal, 2011, 47(7):655-660(in Chinese)
陈世国, 强胜, 毛婵娟. 草甘膦作用机制和抗性研究进展[J]. 植物保护, 2017, 43(2):17-24 Chen S G, Qiang S, Mao C J. Mechanism of action of glyphosate and research advances in glyphosate resistance[J]. Plant Protection, 2017, 43(2):17-24(in Chinese)
Brito I P, Tropaldi L, Carbonari C A, et al. Hormetic effects of glyphosate on plants[J]. Pest Management Science, 2018, 74(5):1064-1070 Xu S J, Liu Y, Zhang J, et al. Proteomic mechanisms for the combined stimulatory effects of glyphosate and antibiotic contaminants on Microcystis aeruginosa[J]. Chemosphere, 2021, 267:129244 Khan S, Zhou J L, Ren L, et al. Effects of glyphosate on germination, photosynthesis and chloroplast morphology in tomato[J]. Chemosphere, 2020, 258:127350 Agathokleous E, Kitao M, Calabrese E J. Hormesis:A compelling platform for sophisticated plant science[J]. Trends in Plant Science, 2019, 24(4):318-327 Mittler R. ROS are good[J]. Trends in Plant Science, 2017, 22(1):11-19 Choudhary A, Kumar A, Kaur N. ROS and oxidative burst:Roots in plant development[J]. Plant Diversity, 2020, 42(1):33-43 夏爱莲, 金晨钟, 胡一鸿, 等. 草甘膦胁迫对马唐抗氧化酶系及丙二醛含量的影响研究[J]. 湖南农业科学, 2016(11):24-26, 30 Xia A L, Jin C Z, Hu Y H, et al. Influences of herbicide glyphosate on antioxidant enzyme system and MDA content of Digitaria sanguinalis[J]. Hunan Agricultural Sciences, 2016(11):24-26, 30(in Chinese)
原向阳, 郭平毅, 张丽光, 等. 干旱胁迫下草甘膦对抗草甘膦大豆幼苗保护酶活性及脂质过氧化作用的影响[J]. 中国农业科学, 2010, 43(4):698-705 Yuan X Y, Guo P Y, Zhang L G, et al. Glyphosate and post-drought rewatering on protective enzyme activities and membrane lipid peroxidation in leaves of glyphosate-resistant soybean[Glycine max (L.) merr.] seedlings[J]. Scientia Agricultura Sinica, 2010, 43(4):698-705(in Chinese)
Geng Y, Jiang L J, Zhang D Y, et al. Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018:Occurrence, main drivers, and environmental risk assessment[J]. The Science of the Total Environment, 2021, 769:144396 孙凯峰, 王娜, 刘莉莉, 等. 基于四尾栅藻响应的有机磷农药生态风险评估[J]. 中国环境科学, 2013, 33(5):868-873 Sun K F, Wang N, Liu L L, et al. Ecological risks assessment of organophosphorus pesticides based on response of Scenedesmus quadricanda[J]. China Environmental Science, 2013, 33(5):868-873(in Chinese)
Dabney B L, Patiño R. Low-dose stimulation of growth of the harmful alga, Prymnesium parvum, by glyphosate and glyphosate-based herbicides[J]. Harmful Algae, 2018, 80:130-139 -

计量
- 文章访问数: 2533
- HTML全文浏览数: 2533
- PDF下载数: 110
- 施引文献: 0