不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应

奚豪, 李哲, 方治国, 刘惠君. 不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应[J]. 生态毒理学报, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001
引用本文: 奚豪, 李哲, 方治国, 刘惠君. 不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应[J]. 生态毒理学报, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001
Xi Hao, Li Zhe, Fang Zhiguo, Liu Huijun. Photosynthetic Toxicity of Ionic Liquids with Varying Alkyl Chains to Model Plants Arabidopsis and Wheat[J]. Asian journal of ecotoxicology, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001
Citation: Xi Hao, Li Zhe, Fang Zhiguo, Liu Huijun. Photosynthetic Toxicity of Ionic Liquids with Varying Alkyl Chains to Model Plants Arabidopsis and Wheat[J]. Asian journal of ecotoxicology, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001

不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应

    作者简介: 奚豪(1996—),男,硕士研究生,研究方向为生态毒理学,E-mail:zjgsu_xxh@163.com
    通讯作者: 刘惠君, E-mail: lhj@zjgsu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(42177265,21377115);浙江省自然科学基金资助项目(LY18B070002);浙江工商大学研究生科研创新基金项目(19020160015)

  • 中图分类号: X171.5

Photosynthetic Toxicity of Ionic Liquids with Varying Alkyl Chains to Model Plants Arabidopsis and Wheat

    Corresponding author: Liu Huijun, lhj@zjgsu.edu.cn
  • Fund Project:
  • 摘要: 离子液体(ionic liquids,ILs)作为传统有机溶剂的替代品,其环境残留存在潜在生态风险。本文研究了咪唑硝酸盐ILs([C6mim]NO3、[C8mim]NO3和[C12mim]NO3)对拟南芥和小麦幼苗的生长影响,从表型、叶质量、叶绿素含量和叶绿素荧光参数等方面比较了3种不同碳链长度ILs的毒性差异以及不同植物的响应效应。结果表明,3种ILs对拟南芥幼苗和小麦生长均有抑制作用且随碳链长度增加毒性增加,叶绿素含量随ILs浓度升高而降低,叶片荧光参数F0上升、FmFv/Fm下降,表明光系统Ⅱ和电子传递通路受到胁迫;Fv/Fm和叶绿素含量均与抑制率相关(r2分别为0.8643、0.8117)。Y(Ⅱ)和Y(NPQ)下降,[C8mim]NO3处理组的Y(Ⅱ)值是对照组的25.13%,Y(NPQ)是对照组的81.91%;但[C12mim]NO3处理导致拟南芥新叶光合效能升高,Y(NPQ)是对照组的116.3%。[C12mim]NO3对小麦的光合作用影响小于拟南芥,因此研究ILs毒性时应考虑不同植物类型的毒性效应。
  • 加载中
  • Petkovic M, Seddon K R, Rebelo L P, et al. Ionic liquids:A pathway to environmental acceptability[J]. Chemical Society Reviews, 2011, 40(3):1383-1403
    Amde M, Liu J F, Pang L. Environmental application, fate, effects, and concerns of ionic liquids:A review[J]. Environmental Science & Technology, 2015, 49(21):12611-12627
    Thuy Pham T P, Cho C W, Yun Y S. Environmental fate and toxicity of ionic liquids:A review[J]. Water Research, 2010, 44(2):352-372
    Bubalo M C, Radošević K, Redovniković I R, et al. A brief overview of the potential environmental hazards of ionic liquids[J]. Ecotoxicology and Environmental Safety, 2014, 99:1-12
    Cho C W, Pham T P T, Zhao Y F, et al. Review of the toxic effects of ionic liquids[J]. The Science of the Total Environment, 2021, 786:147309
    Mrozik W, Jungnickel C, Paszkiewicz M, et al. Interaction of novel ionic liquids with soils[J]. Water, Air, and Soil Pollution, 2013, 224:1759
    Li Y J, Yang M, Liu L, et al. Effects of 1-butyl-3-methylimidazolium chloride on the photosynthetic system and metabolism of maize (Zea mays L.) seedlings[J]. Ecotoxicology and Environmental Safety, 2018, 161:648-654
    Li M, Xue Y L, Liu Z J, et al. Toxic effect and mechanism of four ionic liquids on seedling taproots of Arabidopsis thaliana[J]. Environmental Science and Pollution Research International, 2018, 25(15):14703-14712
    Lefebvre S, Mouget J L, Lavaud J. Duration of rapid light curves for determining the photosynthetic activity of microphytobenthos biofilm in situ[J]. Aquatic Botany, 2011, 95(1):1-8
    Pham T P, Cho C W, Min J, et al. Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata[J]. Journal of Bioscience and Bioengineering, 2008, 105(4):425-428
    Himelblau E, Amasino R M. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence[J]. Journal of Plant Physiology, 2001, 158(10):1317-1323
    Wang H, Jin M K, Xu L L, et al. Effects of ketoprofen on rice seedlings:Insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis[J]. Environmental Pollution, 2020, 263(Pt A):114533
    Liu J H, Hou H, Zhao L, et al. Protective effect of foliar application of sulfur on photosynthesis and antioxidative defense system of rice under the stress of Cd[J]. The Science of the Total Environment, 2020, 710:136230
    Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover[J]. Biochimica et Biophysica Acta, 1993, 1143(2):113-134
    Liu H J, Zhang S X, Zhang X Q, et al. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings[J]. Journal of Hazardous Materials, 2015, 286:440-448
    Liu H J, Xia Y L, Cai W D, et al. Enantioselective oxidative stress and oxidative damage caused by Rac- and S-metolachlor to Scenedesmus obliquus[J]. Chemosphere, 2017, 173:22-30
    Tan S L, Liu T, Zhang S B, et al. Balancing light use efficiency and photoprotection in tobacco leaves grown at different light regimes[J]. Environmental and Experimental Botany, 2020, 175:104046
    Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research, 2004, 79(2):209
    Krause G, Jahns P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching:Characterization and function[M]//Chlorophyll a Fluorescence. Springer, 2004:463-495
    Basso S, Simionato D, Gerotto C, et al. Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana:Evidence of convergent evolution in the supramolecular organization of photosystem Ⅰ[J]. Biochimica et Biophysica Acta, 2014, 1837(2):306-314
    侯秀富, 郭沛涌, 张华想, 等. 水体悬浮颗粒物对斜生栅藻生理生化及光合活性的影响[J]. 环境科学学报, 2013, 33(5):1446-1457

    Hou X F, Guo P Y, Zhang H X, et al. Effects of water suspended particulate matter on the physiological and photosynthetic activity of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 2013, 33(5):1446-1457(in Chinese)

    Shahzadi A K, Bano H, Ogbaga C C, et al. Coordinated impact of ion exclusion, antioxidants and photosynthetic potential on salt tolerance of ridge gourd[Luffa acutangula (L.) Roxb. [J]. Plant Physiology and Biochemistry:PPB, 2021, 167:517-528
  • 加载中
计量
  • 文章访问数:  1543
  • HTML全文浏览数:  1543
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-17
奚豪, 李哲, 方治国, 刘惠君. 不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应[J]. 生态毒理学报, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001
引用本文: 奚豪, 李哲, 方治国, 刘惠君. 不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应[J]. 生态毒理学报, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001
Xi Hao, Li Zhe, Fang Zhiguo, Liu Huijun. Photosynthetic Toxicity of Ionic Liquids with Varying Alkyl Chains to Model Plants Arabidopsis and Wheat[J]. Asian journal of ecotoxicology, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001
Citation: Xi Hao, Li Zhe, Fang Zhiguo, Liu Huijun. Photosynthetic Toxicity of Ionic Liquids with Varying Alkyl Chains to Model Plants Arabidopsis and Wheat[J]. Asian journal of ecotoxicology, 2022, 17(4): 426-432. doi: 10.7524/AJE.1673-5897.20210917001

不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应

    通讯作者: 刘惠君, E-mail: lhj@zjgsu.edu.cn
    作者简介: 奚豪(1996—),男,硕士研究生,研究方向为生态毒理学,E-mail:zjgsu_xxh@163.com
  • 浙江工商大学环境科学与工程学院, 杭州 310018
基金项目:

国家自然科学基金资助项目(42177265,21377115);浙江省自然科学基金资助项目(LY18B070002);浙江工商大学研究生科研创新基金项目(19020160015)

摘要: 离子液体(ionic liquids,ILs)作为传统有机溶剂的替代品,其环境残留存在潜在生态风险。本文研究了咪唑硝酸盐ILs([C6mim]NO3、[C8mim]NO3和[C12mim]NO3)对拟南芥和小麦幼苗的生长影响,从表型、叶质量、叶绿素含量和叶绿素荧光参数等方面比较了3种不同碳链长度ILs的毒性差异以及不同植物的响应效应。结果表明,3种ILs对拟南芥幼苗和小麦生长均有抑制作用且随碳链长度增加毒性增加,叶绿素含量随ILs浓度升高而降低,叶片荧光参数F0上升、FmFv/Fm下降,表明光系统Ⅱ和电子传递通路受到胁迫;Fv/Fm和叶绿素含量均与抑制率相关(r2分别为0.8643、0.8117)。Y(Ⅱ)和Y(NPQ)下降,[C8mim]NO3处理组的Y(Ⅱ)值是对照组的25.13%,Y(NPQ)是对照组的81.91%;但[C12mim]NO3处理导致拟南芥新叶光合效能升高,Y(NPQ)是对照组的116.3%。[C12mim]NO3对小麦的光合作用影响小于拟南芥,因此研究ILs毒性时应考虑不同植物类型的毒性效应。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回