不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应

奚豪,李哲,方治国,刘惠君*

浙江工商大学环境科学与工程学院,杭州 310018

摘要: 离子液体(ionic liquids, ILs)作为传统有机溶剂的替代品,其环境残留存在潜在生态风险。本文研究了咪唑硝酸盐ILs([C6mim]NO3、[C8mim]NO3和[C12mim]NO3)对拟南芥和小麦幼苗的生长影响,从表型、叶质量、叶绿素含量和叶绿素荧光参数等方面比较了3种不同碳链长度ILs的毒性差异以及不同植物的响应效应。结果表明,3种ILs对拟南芥幼苗和小麦生长均有抑制作用且随碳链长度增加毒性增加,叶绿素含量随ILs浓度升高而降低,叶片荧光参数F0上升、FmFv/Fm下降,表明光系统Ⅱ和电子传递通路受到胁迫;Fv/Fm和叶绿素含量均与抑制率相关(r2分别为0.8643、0.8117)。Y(Ⅱ)和Y(NPQ)下降,[C8mim]NO3处理组的Y(Ⅱ)值是对照组的25.13%,Y(NPQ)是对照组的81.91%;但[C12mim]NO3处理导致拟南芥新叶光合效能升高,Y(NPQ)是对照组的116.3%。[C12mim]NO3对小麦的光合作用影响小于拟南芥,因此研究ILs毒性时应考虑不同植物类型的毒性效应。

关键词: 咪唑硝酸盐类离子液体;拟南芥;小麦;生长抑制;叶绿素荧光

离子液体(ionic liquids, ILs)是由有机阳离子和无机或有机阴离子组成在低于100 ℃的温度下以熔融状态存在的有机盐。由于其具有低蒸发、低易燃性和高热稳定性等特点,被作为传统挥发性有机化学品的替代品广泛应用于液液分离、萃取和医药等领域[1]。鉴于ILs不断扩大的应用及其残留的持久性,其生态毒性效应受到关注,关于ILs对大型蚤、斑马鱼和藻类的毒性效应已经证实了其潜在的生态毒性,毒性作用取决于其结构和受试生物体[2-5]。研究表明,ILs对土壤污染也不容忽视,且会对蚯蚓、土壤微生物群落等产生影响[2, 6],目前关于ILs对植物毒性的研究包括对浮萍、水稻、萝卜和玉米等种子萌发、植株生长、氧化胁迫和光合色素含量变化的影响等[7-8],但对于不同植物类型的毒性差异少有涉及,而拟南芥和小麦是分别是理想的双子叶和单子叶模式生物。

本文研究3种ILs对拟南芥和小麦生长抑制(表型、叶质量)和光合作用(叶绿素含量、荧光成像和叶绿素荧光参数)的影响,解析不同碳链长度ILs的毒性差异以及不同植物的响应效应,研究结果可为合理开发和使用环境友好型ILs提供理论支持,为ILs的环境安全性评价提供理论依据。

1 材料与方法(Materials and methods

1.1 植物幼苗培养及处理

拟南芥(哥伦比亚野生型,Arabidopsis thaliana, Col)和小麦(Triticum aestivum L.)种子消毒春化后于培养液中光照培养箱培育,7 d后分别选取长势良好的幼苗,加入不同浓度ILs进行培养(25.0 ℃,光暗比为16 h∶8 h,光照40~70 μmol·m-2·s-1)。

1.2 ILs对植物幼苗的生长抑制

植物生长抑制实验根据OECD化学品测试指南,测定不同处理下7 d后的植物茎叶质量,每个处理组设置3个平行。

1.3 植物叶绿素含量的测定

使用SPAD-502叶绿素含量测定仪,根据植物叶片在2种波长(650 nm和940 nm)下的光学浓度差,测定植物叶片相对叶绿素含量。

1.4 植物叶绿素荧光参数测定

植物叶片暗处理20 min后,参考Lefebvre等[9]的研究,在光化光的光强度分别为0、1、36、81、144、256、361、484、625和841 μmol·m-2·s-1时,用叶绿素荧光仪测量最小荧光(F0)、最大荧光产量(Fm)、最大光化学量子产量(Fv/Fm)、实际光化学量子产量(Y(Ⅱ))和PSⅡ调节性能量耗散的量子产量(Y(NPQ)),并绘制快速光响应曲线。

1.5 数据统计与分析

实验数据用Microsoft Excel 2019和Origin 2019进行处理,用SPSS 26进行单因素方差分析(ANOVA),用Tukey法进行显著性检验,数据结果均采用means±SD的形式表示。

2 结果与讨论(Results and discussion

2.1 ILs对植物幼苗的生长抑制

在3种不同碳链长度ILs暴露处理7 d后,拟南芥叶片颜色和叶片大小均发生变化,与对照组叶片相比,ILs处理组的叶片均明显变小(图1)。在[C6mim]NO3和[C8mim]NO3处理组,拟南芥主叶脉白化,叶片出现褪绿黄化(图1(a)和1(b));在0.5 mg·L-1 [C12mim]NO3处理组叶片出现褐色,高浓度下叶片部分坏死(图1(c))。选择毒性胁迫较大的[C12mim]NO3处理小麦,根长和叶片大小随ILs浓度升高而缩短或缩小(图1(d))。

ILs对植物茎叶质量有明显抑制作用(表1),表现为明显的剂量-效应关系。暴露于[C6mim]NO3、[C8mim]NO3和[C12mim]NO3相同处理浓度(2 mg·L-1)下,拟南芥的茎叶质量分别为对照组的63.64%、35.82%和9.09%,说明ILs对拟南芥毒性作用为[C12mim]NO3>[C8mim]NO3>[C6mim]NO3,其毒性随碳链长度增加而增大。[C12mim]NO3处理组对拟南芥和小麦的EC50分别为0.167 mg·L-1和1.13 mg·L-1。小麦受到的胁迫比拟南芥轻,说明小麦和拟南芥对ILs的敏感性存在差异。

2.2 ILs对植物光合作用的影响

2.2.1 ILs对植物叶绿素含量的影响

ILs处理后,拟南芥叶绿素含量随ILs浓度增加明显减少(表1)。2 mg·L-1 [C6mim]NO3、[C8mim]NO3和[C12mim]NO3处理组的叶绿素含量分别为对照组的81.25%、53.13%和15.63%,说明碳链越长其毒性越强。以往的研究也发现拟南芥和藻类的叶绿素含量随ILs碳链长度增加而降低[10]

[C6mim]NO3和[C8mim]NO3处理下拟南芥幼苗的新叶与老叶的叶绿素含量均明显降低;在[C12mim]NO3处理组,老叶叶绿素含量下降,而其新叶叶绿素含量却呈升高趋势,0.5 mg·L-1 [C12mim]NO3处理组的新生叶片叶绿素含量为对照组的140%,而老叶只有对照组的48.20%。即[C12mim]NO3的新生叶片的生长状态比老叶更好,这可能是植物在暴露于过强的毒性胁迫时的一种自我防御。面对环境胁迫时植物优先将营养集中调往新生叶片,舍弃老旧枯萎叶片而保证植株新生部分存活[11]。小麦叶片叶绿素含量随ILs浓度增加而降低(表1),2 mg·L-1浓度处理下小麦叶片叶绿素含量为对照组的91.43%,拟南芥叶片仅为15.26%,这说明小麦的叶绿素减少量更小,这与茎叶质量变化规律一致。

图1 3种离子液体(ILs)处理后植物幼苗形态学的变化
注:(a)~(c)拟南芥;(d)小麦。
Fig. 1 The morphological changes of plant seedlings after three ionic liquids (ILs) treatments
Note: (a)~(c) Arabidopsis thaliana; (b) Triticum aestivum L..

表1 ILs对植物生长及叶绿素含量的影响
Table 1 The effect of ILs on plant growth and chlorophyll content

ILs浓度/(mg·L-1)Concentration/(mg·L-1)茎叶质量/(g·株-1)Stem and leaf mass/(g·plant-1)叶绿素含量/%Chlorophyll content/%老叶Aged leaf新叶New leaf拟南芥Arabidopsis thaliana[C6mim]NO3[C8mim]NO3[C12mim]NO301.15±0.07a32.86±2.14a32.83±1.14a20.73±0.07a27.57±3.40b26.62±1.10b100.61±0.18b20.14±5.16c21.48±1.55c150.60±0.03b19.77±2.90c19.95±1.91c200.55±0.08b17.12±1.89cd19.50±0.85c300.35±0.04c15.99±4.78d13.58±1.79d0.50.53±0.08a28.18±1.89b23.13±1.31b1.00.40±0.07ab27.37±1.18b21.98±0.53b1.50.39±0.11bc22.08±1.30c21.51±1.31b2.00.37±0.08bc19.26±3.07c20.93±0.30b3.00.28±0.09c14.91±4.49d19.53±2.51b0.250.29±0.02b23.43±8.41b38.14±2.14a0.50.27±0.02b17.58±6.76c43.88±2.44a1.00.27±0.00b15.32±3.46c37.76±2.56ab1.50.15±0.04b6.30±2.40d40.50±2.05b2.00.10±0.03c5.70±1.05d40.20±2.29b小麦Triticum aestivum L.[C12mim]NO300.27±0.03a36.75±1.98a0.10.21±0.05a34.50±3.29a0.250.19±0.04ab34.52±1.67a0.50.16±0.06ab32.04±1.92ab1.00.17±0.05b30.56±1.97b2.00.09±0.05c17.85±4.79c

注:同列不同字母表示组间差异显著(P<0.05)。

Note: Different letters in the same column indicate significant differences between groups (P<0.05).

2.2.2 ILs对植物叶绿素荧光参数的影响

测定叶绿素荧光可以得到光合作用的过程信息[12],不同浓度ILs处理下植物幼苗叶绿素荧光参数如表2所示,包括最小荧光(F0,与叶片叶绿素浓度有关)、最大荧光产量(Fm,反映经过PSⅡ的电子传递情况)和最大光化学量子产量(Fv/Fm,反映PSⅡ反应中心的光能转换效率,不受物种生长阶段影响,非胁迫条件下变化极小,胁迫环境下表现为下降)[13]

在2 mg·L-1 [C6mim]NO3、[C8mim]NO3和[C12mim]NO3处理组,老叶的F0值分别为对照组的1.07倍、1.23倍和2.23倍,说明碳链长度越长,对叶片光能效率影响越大。[C6mim]NO3和[C8mim]NO3处理组,新叶和老叶的F0均随ILs浓度增加而升高,这可能是由于植物的电子传递通路被切断,植物受到的氧化损伤增加,使得PSⅡ发生光失活,导致其反应中心流失,光合系统受到抑制而使F0上升[14]Fm均随ILs浓度增加而降低,表明光系统Ⅱ受到胁迫,导致其类囊体膜受损或类囊体失去活性,影响植物吸收光能的效率[15];新叶和老叶Fv/Fm随ILs浓度增加而下降,表明叶片中的光抑制以及开放PSⅡ中心活性下调。而[C12mim]NO3处理下拟南芥叶片的荧光参数变化不同,老叶F0随ILs浓度增加而增加,而新叶F0随ILs浓度增加而下降,新叶中Fv/Fm变化较小,而在老叶中显著下降,仅为对照的11.89%,说明老叶受到较强胁迫,但新叶叶片吸收光能效率反而增加,这与叶绿素含量的结果一致。

表2 3种ILs处理下植物叶片的荧光参数
Table 2 Fluorescence parameters of plant leaves under three ILs treatments

ILs种类浓度/(mg·L-1)Concentration/(mg·L-1)F0FmFv/Fm新叶New leaf老叶Aged leaf新叶New leaf老叶Aged leaf新叶New leaf老叶Aged leaf拟南芥Arabidopsis thaliana[C6mim]NO3[C8mim]NO3[C12mim]NO300.0900.0860.2930.3130.6930.72520.0910.0920.2880.3130.6840.706100.1100.1030.2720.3060.5960.663150.1550.1090.2660.3040.4170.641200.1720.1160.2620.2830.3440.590300.1950.1270.2590.2530.2470.49800.0830.0890.3500.3020.7630.7050.50.0980.0900.2800.3110.6500.7111.00.1000.0910.2690.3030.6280.7001.50.1530.1020.2550.2820.4000.6382.00.1590.1090.2450.2810.3510.6123.00.2050.1330.2420.2730.1530.51300.1060.0890.3100.2950.6580.6980.250.1030.0930.2830.2650.6360.6490.50.0900.1140.2950.2340.6950.5131.00.0900.1140.2580.2290.6510.5021.50.0780.1160.2470.2190.6840.4702.00.0740.1980.2350.2160.6850.083小麦Triticum aestivum L.[C12mim]NO300.1160.3160.5880.10.1220.2930.5810.250.1310.2870.5470.50.1350.2850.5311.00.1420.2790.5312.00.1450.2620.417

注:F0表示最小荧光;Fm表示最大荧光产量;Fv/Fm表示最大量子产量。

Note: F0 means minimum fluorescence; Fm means maximum fluorescence; Fv/Fm means maximal quantum efficiency.

随ILs浓度增加小麦叶片F0升高、Fm降低,Fv/Fm降低,说明小麦的光合作用过程受到胁迫。在相同浓度处理下(2 mg·L-1),小麦叶片和拟南芥叶片的F0值分别为对照组的125.00%和222.47%,Fm值分别为对照组的82.91%和73.22%,说明ILs对小麦光合作用的影响小于拟南芥。

相关性分析表明,光合作用参数与生长抑制率具有较好的相关性,[C6mim]NO3处理下拟南芥幼苗的新叶和老叶叶绿素含量与抑制率的相关系数(r2)分别为0.9496和0.8906,[C8mim]NO3和[C12mim]NO3处理下新叶与老叶叶绿素含量与抑制率的r2分别为0.9965和0.6365、0.6476和0.7418;[C12mim]NO3处理下小麦叶片叶绿素含量和Fv/Fm与抑制率的r2分别为0.8117和0.8643,说明ILs可能通过抑制植物光合作用而影响植物生长[16]

2.3 ILs对植物荧光外观的影响

光合图谱颜色代表了Fv/Fm的值,图片下方的色带从左到右(从橙色到蓝色)为Fv/Fm值增大。而Fv/Fm的值越小表示植物受到的胁迫越大(图2)。

在[C6mim]NO3处理组中,随ILs浓度升高(10 mg·L-1以上),拟南芥叶片的荧光图颜色从纯蓝色转变为叶片中心出现绿色,ILs对拟南芥造成光合胁迫;在[C8mim]NO3处理组中,随ILs浓度升高(1 mg·L-1以上),荧光成像图颜色由纯蓝色转变为叶片大范围出现绿色,拟南芥受到光合胁迫,且[C8mim]NO3对拟南芥的光合胁迫比[C6mim]NO3更强;[C12mim]NO3处理组中,随ILs浓度升高(1 mg·L-1以上),叶片图像甚至开始出现橙色,少数叶片出现枯萎破损。在同一浓度处理下(2 mg·L-1),[C12mim]NO3造成的光合胁迫(橙黄色)比[C8mim]NO3(绿色)和[C6mim]NO3(蓝色)更强,因此进一步说明3种供试ILs的毒性大小为:[C12mim]NO3>[C8mim]NO3>[C6mim]NO3(图2(a))。

在0.5 mg·L-1和1 mg·L-1 [C12mim]NO3浓度下,小麦叶尖呈现少量绿色,2 mg·L-1处理叶尖有少量橙色出现(图2(b)),而在同一浓度下的拟南芥叶片已完全转为橙绿色。这说明ILs对小麦存在光合胁迫,但胁迫的程度小于拟南芥。

2.4 ILs对植物Y(Ⅱ)和Y(NPQ)的影响

为了进一步明晰ILs胁迫下PSⅡ系统变化,测定了植物叶片Y(Ⅱ)和Y(NPQ)[17]。Y(Ⅱ)反映的是叶片的实际光能转化效率,表示PSⅡ的实际光合效率[18],Y(NPQ)是指非光化学猝灭量子产率,指PSⅡ调节性能量耗散(如将过量光能耗散为热)的量子产率[19]

随ILs浓度增高,拟南芥叶片Y(Ⅱ)下降(图3(a)),说明拟南芥的实际光合效率下降,这可能与PSⅡ的光捕获复合体破坏有关。光捕获复合体是光系统Ⅰ和光系统Ⅱ之间的结构,其作用是维持2个光系统的能量平衡,而有毒物质会破坏这种平衡,从而影响光合作用[20]。在同等条件(36 μmol·m-2·s-1,2 mg·L-1)下,[C6mim]NO3和[C8mim]NO3处理组的Y(Ⅱ)值分别为对照组的98.96%和25.13%,说明[C8mim]NO3对拟南芥的胁迫更强。[C12mim]NO3处理组的Y(Ⅱ)值差别不大,说明该组植物样品受到胁迫较小,这可能由于植物受高毒性污染物胁迫时,会产生某种自我防御[21]

图2 ILs处理后植物叶片叶绿素荧光图
注:(a)拟南芥;(b)小麦。
Fig. 2 Chlorophyll fluorescence of plant leaves treated with three ILs
Note: (a) Arabidopsis thaliana; (b) Triticum aestivum L..

图3 ILs对植物Y(Ⅱ)和Y(NPQ)的影响
注:(a)和(b)拟南芥;(c)和(d)小麦;PAR表示光合有效辐射,Y(Ⅱ)表示实际光合效率,Y(NPQ)表示非光化学猝灭量子产率。
Fig. 3 The effect of ILs on plant Y (Ⅱ) and Y(NPQ)
Note: (a) and (b) Arabidopsis thaliana; (c) and (d) Triticum aestivum L.; PAR means photosynthetically active radiation; Y(Ⅱ) means effective photosynthetic efficiency; Y(NPQ) means non photochemical quenching quantum yield.

拟南芥的Y(NPQ)值随[C6mim]NO3和[C8mim]NO3浓度升高而降低(图3(b)),Y(NPQ)下降说明叶绿素a对电子的传导率降低,影响PSⅡ正常运作,从而影响植物的正常光合作用[22]。在36 μmol·m-2·s-1光强和2 mg·L-1浓度下,[C6mim]NO3、[C8mim]NO3和[C12mim]NO3处理组的Y(NPQ)分别是对照组的95.37%、81.91%和116.30%。[C8mim]NO3处理组的Y(NPQ)值比[C6mim]NO3低,说明[C8mim]NO3毒性更强;而[C12mim]NO3处理组的Y(NPQ)却比对照组高,说明拟南芥受到的胁迫较小,可能是植物在面对高毒性污染物时产生的某种自我防御。

在[C12mim]NO3处理下,小麦叶片的Y(Ⅱ)值和Y(NPQ)与对照没有显著差异(图3(c)和3(d)),说明[C12mim]NO3对小麦叶片实际光合效率和电子的传导率影响不大。

本文研究了3种不同碳链长度咪唑硝酸盐ILs对拟南芥和小麦的生长抑制作用,其毒性大小为[C12mim]NO3>[C8mim]NO3>[C6mim]NO3。3种供试ILs对拟南芥和小麦叶片的叶绿素含量均有明显影响,叶绿素合成受到严重抑制,且ILs的碳链长度越长,拟南芥幼苗受到的光合胁迫越强。[C6mim]NO3和[C8mim]NO3处理组及[C12mim]NO3处理组老叶的拟南芥叶片荧光参数F0随ILs浓度增加而升高,FmFv/Fm、Y(Ⅱ)和Y(NPQ)随ILs浓度增加而下降,说明ILs可以通过破坏PSⅡ的光捕获复合体和降低光合作用电子传导率来影响光能转化效率和PSⅡ的正常运作,进而影响植物正常光合作用。而[C12mim]NO3处理下拟南芥新叶叶绿素含量上升,F0下降,FmFv/Fm、Y(Ⅱ)和Y(NPQ)升高,说明植物受到高毒性污染物胁迫时,会产生某种自我防御。[C12mim]NO3对小麦的光合作用影响要小于拟南芥,因此研究ILs毒性时应考虑不同植物类型的毒性效应。

参考文献(References):

[1] Petkovic M, Seddon K R, Rebelo L P, et al. Ionic liquids: A pathway to environmental acceptability [J]. Chemical Society Reviews, 2011, 40(3): 1383-1403

[2] Amde M, Liu J F, Pang L. Environmental application, fate, effects, and concerns of ionic liquids: A review [J]. Environmental Science & Technology, 2015, 49(21): 12611-12627

[3] Thuy Pham T P, Cho C W, Yun Y S. Environmental fate and toxicity of ionic liquids: A review [J]. Water Research, 2010, 44(2): 352-372

[4] Bubalo M C, I R, et al. A brief overview of the potential environmental hazards of ionic liquids [J]. Ecotoxicology and Environmental Safety, 2014, 99: 1-12

[5] Cho C W, Pham T P T, Zhao Y F, et al. Review of the toxic effects of ionic liquids [J]. The Science of the Total Environment, 2021, 786: 147309

[6] Mrozik W, Jungnickel C, Paszkiewicz M, et al. Interaction of novel ionic liquids with soils [J]. Water, Air, and Soil Pollution, 2013, 224: 1759

[7] Li Y J, Yang M, Liu L, et al. Effects of 1-butyl-3-methylimidazolium chloride on the photosynthetic system and metabolism of maize (Zea mays L.) seedlings [J]. Ecotoxicology and Environmental Safety, 2018, 161: 648-654

[8] Li M, Xue Y L, Liu Z J, et al. Toxic effect and mechanism of four ionic liquids on seedling taproots of Arabidopsis thaliana [J]. Environmental Science and Pollution Research International, 2018, 25(15): 14703-14712

[9] Lefebvre S, Mouget J L, Lavaud J. Duration of rapid light curves for determining the photosynthetic activity of microphytobenthos biofilm in situ [J]. Aquatic Botany, 2011, 95(1): 1-8

[10] Pham T P, Cho C W, Min J, et al. Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata [J]. Journal of Bioscience and Bioengineering, 2008, 105(4): 425-428

[11] Himelblau E, Amasino R M. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence [J]. Journal of Plant Physiology, 2001, 158(10): 1317-1323

[12] Wang H, Jin M K, Xu L L, et al. Effects of ketoprofen on rice seedlings: Insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis [J]. Environmental Pollution, 2020, 263(Pt A): 114533

[13] Liu J H, Hou H, Zhao L, et al. Protective effect of foliar application of sulfur on photosynthesis and antioxidative defense system of rice under the stress of Cd [J]. The Science of the Total Environment, 2020, 710: 136230

[14] Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover [J]. Biochimica et Biophysica Acta, 1993, 1143(2): 113-134

[15] Liu H J, Zhang S X, Zhang X Q, et al. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings [J]. Journal of Hazardous Materials, 2015, 286: 440-448

[16] Liu H J, Xia Y L, Cai W D, et al. Enantioselective oxidative stress and oxidative damage caused by Rac- and S-metolachlor to Scenedesmus obliquus [J]. Chemosphere, 2017, 173: 22-30

[17] Tan S L, Liu T, Zhang S B, et al. Balancing light use efficiency and photoprotection in tobacco leaves grown at different light regimes [J]. Environmental and Experimental Botany, 2020, 175: 104046

[18] Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes [J]. Photosynthesis Research, 2004, 79(2): 209

[19] Krause G, Jahns P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function [M]// Chlorophyll a Fluorescence. Springer, 2004: 463-495

[20] Basso S, Simionato D, Gerotto C, et al. Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: Evidence of convergent evolution in the supramolecular organization of photosystem Ⅰ [J]. Biochimica et Biophysica Acta, 2014, 1837(2): 306-314

[21] 侯秀富, 郭沛涌, 张华想, 等. 水体悬浮颗粒物对斜生栅藻生理生化及光合活性的影响[J]. 环境科学学报, 2013, 33(5): 1446-1457

Hou X F, Guo P Y, Zhang H X, et al. Effects of water suspended particulate matter on the physiological and photosynthetic activity of Scenedesmus obliquus [J]. Acta Scientiae Circumstantiae, 2013, 33(5): 1446-1457 (in Chinese)

[22] Shahzadi A K, Bano H, Ogbaga C C, et al. Coordinated impact of ion exclusion, antioxidants and photosynthetic potential on salt tolerance of ridge gourd [Luffa acutangula (L.) Roxb. [J]. Plant Physiology and Biochemistry: PPB, 2021, 167: 517-528

Photosynthetic Toxicity of Ionic Liquids with Varying Alkyl Chains to Model Plants Arabidopsis and Wheat

Xi Hao, Li Zhe, Fang Zhiguo, Liu Huijun*

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

Abstract: Ionic liquids (ILs) are used as substitutes for traditional organic solvents, its environmental residues have potential ecological risks. The effects of imidazole nitrate ILs ([C6mim]NO3, [C8mim]NO3 and [C12mim]NO3) on the growth of Arabidopsis and wheat seedlings were studied. The toxicity differences of three ILs with varying alkyl chain lengths and the response effects of different plants were compared in terms of phenotype, leaf weight, chlorophyll content and chlorophyll fluorescence parameters. The results showed that the three ILs inhibit the growth of Arabidopsis and wheat seedlings, the chlorophyll content decreased with ILs concentration increasing, F0 increased while Fm and Fv/Fm decreased, indicating that the photosystem Ⅱ and electron transport pathways are affected; Fv/Fm and chlorophyll content were correlated with inhibition rate (r2 was 0.8643 and 0.8117, respectively). The Y(Ⅱ) and Y(NPQ) value decreased, which was 25.13% and 81.91% of the control, respectively, in [C8mim]NO3 treatment. While the photosynthetic efficiency of Arabidopsis new leaves increased in [C12mim]NO3 treatment, and Y(NPQ) was 116.3% of the control. [C12mim]NO3 has a smaller photosynthetic effect on wheat than that on Arabidopsis, so the toxic effects of different plant types should be considered in ILs toxicity.

Keywords: imidazole nitrate ionic liquid; Arabidopsis; wheat; growth inhibition; chlorophyll fluorescence

收稿日期2021-09-17

录用日期:2021-11-09

文章编号: 1673-5897(2022)4-426-07

中图分类号: X171.5

文献标识码: A

基金项目国家自然科学基金资助项目(42177265,21377115);浙江省自然科学基金资助项目(LY18B070002);浙江工商大学研究生科研创新基金项目(19020160015)

第一作者奚豪(1996—),男,硕士研究生,研究方向为生态毒理学,E-mail: zjgsu_xxh@163.com

*通讯作者(Corresponding author), E-mail: lhj@zjgsu.edu.cn

DOI: 10.7524/AJE.1673-5897.20210917001

奚豪, 李哲, 方治国, 等. 不同碳链长度离子液体对模式植物拟南芥和小麦的光合致毒效应[J]. 生态毒理学报,2022, 17(4): 426-432

Xi H, Li Z, Fang Z G, et al. Photosynthetic toxicity of ionic liquids with varying alkyl chains to model plants Arabidopsis and wheat [J]. Asian Journal of Ecotoxicology, 2022, 17(4): 426-432 (in Chinese)

Received 17 September 2021 accepted 9 November 2021

通讯作者简介:刘惠君(1970—),女,博士,教授,主要研究方向为生态毒理学。