黑藻(Hydrilla verticillat)在铅、锌胁迫下的代谢组学研究
Metabolomics Study of Hydrilla verticillata under Heavy Metal Stress of Lead and Zinc
-
摘要: 黑藻(Hydrilla verticillat)作为我国淡水水域常见的沉水植物,对水环境重金属污染修复有着重要作用。通过超高效液相色谱串联质谱(UPLC-MS/MS)技术检测了黑藻中342个初级代谢产物,并采用单变量、主成分分析(PCA)和正交偏最小二乘法判别分析(OPLS-DA)多元统计分析方法分析代谢物,以探究在不同浓度铅、锌胁迫下黑藻初级代谢产物的变化特性,弄清铅、锌对生物体代谢活动的影响。结果表明,铅单一胁迫主要促进黑藻机体酚酸类和糖类物质的生成,抑制脂类的生成,N-苯乙酰基-L-谷氨酰胺和异水杨酸-O-葡萄糖显著上调,相比单一铅胁迫,铅锌复合胁迫主要促进黑藻氨基酸、糖类、有机酸和脂质等代谢物的合成,抑制酚酸类、维生素和脂质等代谢物的合成;锌单一胁迫主要促进氨基酸、核苷酸、糖类和有机酸等代谢物的生成,抑制部分酚酸类和脂质代谢物的生成,相比单一锌胁迫,高浓度铅锌复合胁迫(Pb0.10+Zn2.00)可主要促进酚酸类、核苷酸、有机酸和脂质等代谢物的合成,抑制以谷胱甘肽为代表的氨基酸等代谢物的合成;超高浓度铅锌复合胁迫(Pb0.20+Zn4.00)可主要促进对苯二甲酸(C8H6O4)和去鼠李糖异洋丁香酚苷B (C23H26O11)2种酚酸类代谢物的合成,抑制氨基酸、核苷酸、维生素和有机酸等代谢物的合成。另外,N-苯乙酰基-L-谷氨酰胺(C13H16N2O4)、酪氨(C8H11NO)、对香豆酰咖啡酰酒石酸(C22H18O11)、没食子鞣质(C13H16O10)和异水杨酸-O-葡萄糖(C13H16O8)可作为铅胁迫的代谢标记物,5-氨基戊酸(C5H11NO2)、L-(+)-精氨酸(C6H14N4O2)和L-焦谷氨酸(C5H7NO3)等可作为锌胁迫的代谢标记物。Abstract: Hydrilla verticillata, a common submerged plant in freshwater of China, has a certain adsorption effect on heavy metals, which made it play an important role in water environment protection. Excessive lead accumulation could affect the growth and physiological metabolism in plants, meanwhile, even cause plant death. As the associated metal of lead, zinc is one of the necessary elements of organisms, but when its content exceeds the micro-demand required, it will cause a certain degree of damage to the body. Three hundred and forty-two primary metabolites in H. verticillata were detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) detection technology. We explored the changes of the first metabolites and the metabolism activities in H. verticillata under 28-day stress of different concentrations of lead-zinc by univariate, principal part-related analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The results showed that single lead stress mainly increased the production of phenolic acids and saccharides in H. verticillata and inhibited the production of lipids, which involved physiological processes such as phenylalanine metabolism, carbohydrate metabolism and biosynthesis of secondary metabolites. It indicated phenolic acids and carbohydrates played a major role in resistance under lead stress. While lead-zinc combined stress promoted the yield of amino acids, sugars, organic acids and lipids, and depressed the production of phenolic acids, vitamins and lipids. Single stress of zinc mainly increased the production of amino acids, nucleotides, saccharides and organic acids, and inhibited the content of phenolic acids and lipid metabolites. The physiological processes relates to citrate cycle (TCA cycle), arginine and proline metabolism, carbohydrate metabolism, biosynthesis of secondary metabolites, carbon metabolism and ABC transporter metabolism. Amino acids, nucleotides, carbohydrates and other substances take protective action on the body after subjected to external environmental stress, indicating that the body has carried out metabolic regulation to combat stress. Compared with single zinc stress, high-concentration lead-zinc combined stress (Pb0.10+Zn2.00) mainly promoted to increase the content of phenolic acids, nucleotides, organic acids and lipids, and depressed the production of amino acids represented by oxidized glutathione. In addition, the ultra-high concentration of lead and zinc combined stress (Pb0.20+Zn4.00) mainly increased the production of phenolic acid (terephthalic acid and calceorioside B), and inhibited the content of amino acids, nucleotides, vitamins and organic acids. Consequently, phenylacetyl-L-glutamine, L-tyramine, p-coumaroylcaffeoyl tartaric acid, glucogallin and isosalicylic acid O-glycoside could be used as metabolism markers in H. verticillata under lead stress, while 5-aminovaleric acid, L-(+)-arginine and L-pyroglutamic acid could be used as metabolism markers in H. verticillata under zinc stress.
-
Key words:
- lead /
- zinc /
- Hydrilla verticillata /
- hytotoxicity /
- metabolomics
-
-
任继凯, 陈清朗, 陈灵芝, 等. 土壤中镉、铅、锌及其相互作用对作物的影响[J]. 植物生态学与地植物学丛刊, 1982, 6(4):320-329 Ren J K, Chen Q L, Chen L Z, et al. The effect of cadmium, lead, zinc in soil and their interaction on crop plants[J]. Chinese Journal of Plant Ecology, 1982, 6(4):320-329(in Chinese)
陈怀满. 土壤-植物系统中的重金属污染[M]. 北京:科学出版社, 1996:74-83 简敏菲, 汪斯琛, 余厚平, 等. Cd2+、Cu2+胁迫对黑藻(Hydrilla verticillata)的生长及光合荧光特性的影响[J]. 生态学报, 2016, 36(6):1719-1727 Jian M F, Wang S C, Yu H P, et al. Influence of Cd2+ or Cu2+ stress on the growth and photosynthetic fluorescence characteristics of Hydrilla verticillata[J]. Acta Ecologica Sinica, 2016, 36(6):1719-1727(in Chinese)
Bunluesin S, Kruatrachue M, Pokethitiyook P, et al. Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass[J]. Journal of Bioscience and Bioengineering, 2007, 103(6):509-513 陈国梁, 林清. 不同沉水植物对Cu, Pb, Cd, Zn元素吸收积累差异及规律研究[J]. 环境科技, 2009, 22(1):9-12 , 16 Chen G L, Lin Q. Research on accumulation of Cu, Pb, Cd, Zn in different submerged plants[J]. Environmental Science and Technology, 2009, 22(1):9-12, 16(in Chinese)
张连凯, 覃小群, 黄奇波, 等. 岩溶区矿山污染地下水的水生植物修复初步研究[J]. 中国岩溶, 2017, 36(5):743-750 Zhang L K, Qin X Q, Huang Q B, et al. Aquatic plants bioremediation to groundwater contaminated by mines in Karst areas[J]. Carsologica Sinica, 2017, 36(5):743-750(in Chinese)
焦轶男, 朱宏. 黑藻(Hydrilla verticillata)对重金属Cd2+的积累及生理响应[J]. 中国农学通报, 2014, 30(5):249-253 Jiao Y N, Zhu H. Physiological responses of Hydrilla verticillata to cadmium and cadmium bioaccumulation[J]. Chinese Agricultural Science Bulletin, 2014, 30(5):249-253(in Chinese)
林海, 陈思, 董颖博, 等. 黑藻、狐尾藻对重金属铅、镉、铬、钒污染水体的修复[J]. 中国有色金属学报, 2017, 27(1):178-186 Lin H, Chen S, Dong Y B, et al. Phytoremediation on heavy metal-polluted water of Pb, Cd, Cr and V by Hydrilla verticillata and Myriophyllum verticillatum[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1):178-186(in Chinese)
高海荣, 陈秀丽, 赵爱娟, 等. 5种沉水植物对重金属富集能力的对比研究[J]. 环境保护科学, 2016, 42(4):101-105 Gao H R, Chen X L, Zhao A J, et al. Comparison of heavy metal accumulation by five submerged macrophytes[J]. Environmental Protection Science, 2016, 42(4):101-105(in Chinese)
谢佩君, 李铭红, 晏丽蓉, 等. 三种沉水植物对Cu、Pb复合污染底泥的修复效果[J]. 农业环境科学学报, 2016, 35(4):757-763 Xie P J, Li M H, Yan L R, et al. Remediation of Cu and Pb co-polluted sediments by three submerged plants[J]. Journal of Agro-Environment Science, 2016, 35(4):757-763(in Chinese)
Wang C, Zhang S H, Wang P F, et al. Effects of ammonium on the antioxidative response in Hydrilla verticillata (L. f.) Royle plants[J]. Ecotoxicology and Environmental Safety, 2010, 73(2):189-195 Yan S, Zhou Q X. Toxic effects of Hydrilla verticillata exposed to toluene, ethylbenzene and xylene and safety assessment for protecting aquatic macrophytes[J]. Chemosphere, 2011, 85(6):1088-1094 Nicholson J K, Lindon J C, Holmes E. ‘Metabonomics’:Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189 Nicholson J K, Connelly J, Lindon J C, et al. Metabonomics:A platform for studying drug toxicity and gene function[J]. Nature Reviews Drug Discovery, 2002, 1(2):153-161 Zheng P, Gao H C, Li Q, et al. Plasma metabonomics as a novel diagnostic approach for major depressive disorder[J]. Journal of Proteome Research, 2012, 11(3):1741-1748 Jiménez B, Montoliu C, MacIntyre D A, et al. Serum metabolic signature of minimal hepatic encephalopathy by 1H-nuclear magnetic resonance[J]. Journal of Proteome Research, 2010, 9(10):5180-5187 赵丽娟. 代谢组学技术研究氯磺隆和镉对玉米幼苗和菠菜代谢的影响[D]. 太原:山西大学, 2016:8-10 Zhao L J. Changes in metabolites of maize seedlings and Spinacia oleracea L. under chlorsulfuron and cadmium stress, measured by metabonomics technology[D]. Taiyuan:Shanxi University, 2016:8 -10(in Chinese)
李英帅. 应用代谢组学技术进行中医药研究探讨[J]. 安徽中医学院学报, 2008, 27(6):1-5 Li Y S. Discussion on the application of metabonomics technology in traditional Chinese medicine research[J]. Journal of Anhui Traditional Chinese Medical College, 2008, 27(6):1-5(in Chinese)
耿柠波, 张海军, 王菲迪, 等. 代谢组学技术在环境毒理学研究中的应用[J]. 生态毒理学报, 2016, 11(3):26-35 Geng N B, Zhang H J, Wang F D, et al. A review on the application of metabonomic approaches in environmental toxicology[J]. Asian Journal of Ecotoxicology, 2016, 11(3):26-35(in Chinese)
高艳. 重金属Pb2+胁迫对轮叶黑藻毒性效应研究[D]. 重庆:西南大学, 2017:13-14 Gao Y. The toxic effects of heavy metal Pb2+ stress on Hydrilla verticillata[D]. Chongqing:Southwest University, 2017 :13-14(in Chinese)
Lankadurai B P, Nagato E G, Simpson M J. Environmental metabolomics:An emerging approach to study organism responses to environmental stressors[J]. Environmental Reviews, 2013, 21(3):180-205 Viant M R, Bearden D W, Bundy J G, et al. International NMR-based environmental metabolomics intercomparison exercise[J]. Environmental Science & Technology, 2009, 43(1):219-225 Simpson M J, McKelvie J R. Environmental metabolomics:New insights into earthworm ecotoxicity and contaminant bioavailability in soil[J]. Analytical and Bioanalytical Chemistry, 2009, 394(1):137-149 Ruiz J M, Bretones G, Baghour M, et al. Relationship between boron and phenolic metabolism in tobacco leaves[J]. Phytochemistry, 1998, 48(2):269-272 Usadel B, Bläsing O E, Gibon Y, et al. Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range[J]. Plant, Cell & Environment, 2008, 31(4):518-547 Liu D, Islam E, Li T Q, et al. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance[J]. Journal of Hazardous Materials, 2008, 153(1-2):114-122 陈玲玲. 敖汉苜蓿小花与种子响应硼胁迫的蛋白质组学与代谢组学分析[D]. 北京:中国农业大学, 2017:4-5 Chen L L. Proteomic and metabolomics analysis of flowers and seeds of Medicago sativa L.Cv. "Aohan" response to boron stress[D]. Beijing:China Agricultural University, 2017:4 -5(in Chinese)
罗庆. 镉、铅胁迫下东南景天根系分泌物的代谢组学研究[D]. 沈阳:东北大学, 2016:136-138 Luo Q. Metabolomics study on root exudates of Sedum alfredii under Cd and Pb stress[D]. Shenyang:Northeastern University, 2016:136 -138(in Chinese)
徐超. 脯氨酸与重金属耐性和富集的研究进展[J]. 中国资源综合利用, 2018, 36(2):80-83 Xu C. A review of amino acid in heavy metal tolerance and accumulation[J]. China Resources Comprehensive Utilization, 2018, 36(2):80-83(in Chinese)
王珊珊. 栅藻对重金属离子的富集及其机理的研究[D]. 福州:福建师范大学, 2013:49-52 Wang S S. Study on the enrichment for heavy metals by Scenedesmus sp. and its adsorption mechanisms[D]. Fuzhou:Fujian Normal University, 2013:49 -52(in Chinese)
高慧兵. 铅锌胁迫对蓖麻开花生理的影响[D]. 长沙:中南林业科技大学, 2019:39-41 Gao H B. Affect of Lead&Zinc stress on flowering physiology of Ricinus communis L.[D]. Changsha:Central South University of Forestry & Technology, 2019:39 -41(in Chinese)
郭晓音, 严重玲, 叶彬彬. 镉锌复合胁迫对秋茄幼苗渗透调节物质的影响[J]. 应用与环境生物学报, 2009, 15(3):308-312 Guo X Y, Yan C L, Ye B B. Effect of Cd-Zn combined stress on contents of osmotic substances in Kandelia candel (L.) Druce seedlings[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(3):308-312(in Chinese)
-

计量
- 文章访问数: 2462
- HTML全文浏览数: 2462
- PDF下载数: 135
- 施引文献: 0