-
河道水体中除常规污染物(氮、磷、有机物等)[1]之外,还广泛存在药物类污染物(如抗生素、消炎药等药物)[2-3]。药物类污染物通过污水处理厂尾水等途径被排入河道[2],易形成“持久性”污染,给非靶向水生生物带来风险[3-4],并潜在地影响水生生态系统和人类健康[3-5]。药物类污染物包括7种:酮洛芬、双氯芬酸、普萘洛尔、甲氧苄啶、罗红霉素、布洛芬和缬沙坦[6-9]。据调查,我国河道内药物类污染物的赋存浓度为0.1~ 1 200 ng·L−1[10-12],生态风险级别高[6]。当前河道治理技术主要针对常规污染物,去除药物类污染物的相关研究较为有限,有必要对现有河道治理技术进行改进并提高对常规污染物的处理效率,以实现对药物类污染物的有效去除。
表面流型人工湿地(表面流湿地)属于植物修复技术范畴,为河道水体治理的典型技 术[13]。尽管该技术的污染物处理效率不高,但其投资小且易于维护,水面无覆盖,有利于水生生态系统结构和功能的恢复,且可为水生生物及鸟类提供栖息场所,具有较高的景观价值等,因而在河道治理中具有广泛的适用性[13]。然而,目前此类人工湿地在河道治理应用中尚存在不足之处,如占地面积大、水质净化能力有限、实际应用中干扰因素多等,因此,有必要对其进行技术改进研究。
曝气增氧技术是另一种常见的河道水体治理技术[14]。该技术操作较为简单,处理效果较好,但其建设和运行成本较高。曝气增氧技术与人工湿地技术相结合应用于河道水体的治理已有相关报道。例如,在水平潜流人工湿地中耦合曝气可提高河道水体污染物(以TN、
$ {\rm{NH}}_4^{+}$ -N和COD表征)的去除效率,其中,间歇曝气和连续曝气下TN可分别降低91.9%和53.7%[15];垂直潜流人工湿地中耦合间歇曝气技术对河道水体中污染物的去除率(以TN、${\rm{NH}}_4^{+}$ -N、TP和COD表征)可分别提升87%、37%和81%[16-18];在复合垂直流人工湿地中加入微曝气,最佳曝气条件下河道水体中污染物去除率(以TN、TP和COD表征)均大于90%,$ {\rm{NH}}_4^{+}$ -N去除率大于70%[19]。目前,曝气增氧技术与人工湿地耦合技术已用于处理染料废水[20]、含柴油废水[21]等工业废水。将曝气与表面流湿地耦合用于废水生物处理单元出水时,污染物(以TN、
${\rm{NH}}_4^{+} $ -N和COD表征)的去除率分别可提升25%、68%和74%[22]。表面流湿地的特点是水面无覆盖,可为曝气增氧创造有利条件,为技术耦合提供可操作性。而采用曝气增氧耦合表面流湿地治理药物污染河水的相关研究尚无报道。本研究将曝气增氧技术与表面流湿地相耦合,通过单因素实验和响应面分析优化工艺条件来处理药物污染河水,以期提高表面流湿地的污染物去除效果,优化其占地面积,延长其使用寿命,从而扩大表面流湿地的适用范围。
曝气耦合表面流湿地技术净化河道水体的工艺优化及该技术对药物类污染物的去除效果
Aeration coupled surface flow wetland for river water treatment: Technological optimization and pharmaceutical removal performance
-
摘要: 采用曝气耦合表面流湿地工艺处理劣Ⅴ类河水,通过单因素实验和响应面分析优化工艺条件并探讨耦合技术对药物类污染物的去除效果。工艺优化后的曝气条件为:曝气量0.45 L·(min·L)−1,水力停留时间1 d,曝气间歇时间2 h(每曝气1 h),曝气位置(曝气深度/水深)0.5处。此条件下耦合技术去除TN、
${\rm{NH}}_4^{+}{\text{-}}{\rm{N }}$ 、TP和COD的效率为55.6%、78.7%、68.1%和53.4%。应用耦合技术处理了2个不同浓度级别(150 ng·L−1和1 000 ng·L−1)的含药物类污染物的河水。结果表明,耦合技术对酮洛芬、普萘洛尔、甲氧苄啶、罗红霉素、布洛芬和缬沙坦的去除效果皆优于对照实验,对罗红霉素和布洛芬的去除具有协同效应,同时,耦合技术对常规污染物TN、${\rm{NH}}_4^{+}{\text{-}}{\rm{N}}$ 和TP 的去除也具有协同效应。本研究可为河道治理中表面流湿地技术的改进及河道水体中药物类污染物的去除提供参考。Abstract: River water treatment is one of the issues of great concern in China. To date, it has been attracting increasing attention that more and more pharmaceuticals are detected in river waters. It requires to improve the technologies for river water treatment to enhance the removal efficiencies of traditional pollutants and to realize the removal of pharmaceuticals. In this study, the aeration technology was coupled to the surface flow wetland in order to enhance the treatment efficiency for river water inferior to Class V. Single factor and response surface analysis experiments were conducted to determine the optimized aeration conditions of the coupled technology, under which the removal performance of pharmaceutical pollutants was investigated through laboratory experiments. The results showed that the coupled technology was able to remove 55.6% of TN, 78.7% of${\rm{NH}}_4^{+}-{\rm{N}} $ , 68.1% of TP and 53.4% of COD from the river water, with the optimized aeration conditions which were determined as: aeration volume 0.45 L·(min·L)−1, reaction time 1 d, aeration intermission time 2 h per 1-hour aeration, and aeration position 0.5 (aeration depth/water depth). By using the optimized technology to treat the river water polluted by pharmaceuticals at a level of 150 ng·L−1 and 1000 ng·L−1, respectively, better removal performance compared to control experiments were observed for 6 pharmaceuticals including ketoprofen, propranolol, trimethoprim, roxithromycin, ibuprofen and valsartan. Particularly, cooperative effects were found for roxithromycin and ibuprofen, as well as TN,${\rm{NH}}_4^{+}-{\rm{N}} $ and TP. This research outcomes can provide data support for the technological improvement of surface flow wetlands applied for river water treatment, and also can propose a feasible and promising method to remove pharmaceuticals from river waters.-
Key words:
- river pollution control /
- pharmaceutical /
- constructed wetland /
- aeration /
- cooperative effect
-
表 1 模拟用水的水质指标及其中微量元素的质量浓度
Table 1. Parameters of simulated river water
pH TN
/(mg·L−1) -N /(mg·L-1)${\rm{NH}}_4^{+} $ TP /(mg·L−1) COD /(mg·L−1) [I-]
/(μg·L−1)[B3+]
/(μg·L−1)7 15 9 1.5 80 6.35 10.85 [Mn2+]
/(μg·L−1)[Zn2+]
/(μg·L−1)[Mo6+]
/(μg·L−1)[Cu2+]
/(μg·L−1)[Co2+]
/(μg·L−1)[Ca2+]
/(μg·L−1)[Fe2+]
/(μg·L−1)72.5 19.55 1 0.08 0.05 80 1 120 表 2 Box-Behnken实验因素与水平
Table 2. Box-behnken experimental factors and levels
水平 曝气量A
/(L·( min·L)−1)水力停留时间B
/d曝气间歇时间C
/h曝气位置D −1 0.4 1 1 0.3 0 0.6 2 2 0.4 1 0.8 3 3 0.5 表 3 7种药物污染物的性质
Table 3. The physical and chemical properties of pharmaceuticals
药物名称 分子式 酸度系数 正辛醇/水分配系数 酮洛芬 C16H14O3 5.94 3.11 双氯芬酸 C14H11Cl2NO2 4.15 4.51 普萘洛尔 C16H21NO2 9.42 3.48 甲氧苄啶 C14H18N4O3 3.23, 6.76 0.91 罗红霉素 C41H76N2O15 9.17 2.75 布洛芬 C13H18O2 4.91 3.97 缬沙坦 C24H29N5O3 3.6 5.8 表 4 BBD实验结果
Table 4. BBD experimental results
序号 A B C D Y1 Y2 Y3 Y4 1 0.6 2 2 0.4 30.3 45.0 44.8 43.4 2 0.6 2 2 0.4 30.0 39.7 41.8 43.4 3 0.6 2 2 0.4 29.3 46.1 49.5 48.8 4 0.6 3 3 0.4 30.7 47.0 45.5 29.6 5 0.6 1 2 0.5 55.3 67.9 85.9 48.1 6 0.4 2 3 0.4 26.0 47.0 50.8 24.4 7 0.8 1 2 0.4 50.5 51.8 32.8 30.2 8 0.4 2 2 0.5 47.4 61.0 64.5 41.9 9 0.6 3 1 0.5 28.6 40.3 45.1 27.4 10 0.4 1 2 0.5 37.7 65.9 63.7 54.1 11 0.6 2 3 0.5 34.4 48.2 56.4 41.1 12 0.6 2 1 0.3 26.8 42.2 57.2 58.9 13 0.6 2 2 0.4 32.5 48.0 53.4 48.8 14 0.4 3 2 0.4 32.4 46.0 46.0 47.3 15 0.6 2 3 0.3 27.8 45.0 49.9 49.6 16 0.6 1 1 0.4 36.1 50.0 51.3 48.1 17 0.6 2 1 0.5 34.4 48.2 59.8 41.9 18 0.6 3 2 0.5 43.4 52.2 40.2 27.4 19 0.8 2 1 0.4 24.6 41.5 46.9 11.1 20 0.8 2 2 0.3 45.9 51.0 45.1 30.4 21 0.8 3 2 0.4 40.2 59.3 43.7 24.0 22 0.6 3 2 0.3 41.3 37.2 36.2 60.7 23 0.6 1 3 0.4 32.3 46.3 52.6 43.7 24 0.6 2 2 0.4 30.7 41.3 44.8 51.9 25 0.4 2 1 0.4 28.2 34.1 35.3 42.2 26 0.8 2 2 0.5 38.4 60.5 67.7 20.7 27 0.6 1 2 0.3 44.5 80.0 87.6 53.5 28 0.4 2 2 0.3 30.8 60.7 62.8 57.0 29 0.8 2 3 0.4 30.8 55.7 57.9 20.0 注:A为曝气量(L·(min·L)−1)、B为水力停留时间(d)、C为曝气间歇时间(h)、D为曝气位置;Y1、Y2、Y3、Y4分别为TN、 -N、TP、COD的去除率(%)。${\rm{NH}}_4^{+} $ 表 5 响应面分析实验的数据统计分析
Table 5. Statistical analysis of the data from the response surface analysis experiment
水质指标 模型显著性 失拟项 可决系数(R2) 精密度 变化系数(CV)/% 显著项 TN ** 不显著 0.955 8 18.607 7 6.66 A,B,D,AD,CD,A2,B2,C2,D2 NH4+-N * 不显著 0.782 3 7.708 9 13.33 B,A2,B2,D2 TP ** 不显著 0.967 9 11.659 9.61 B,AB,D2 COD ** 不显著 0.906 7 11.815 6 14.02 A,B,D,AC,BD, A2,C2 注:1)*表示在α=0.05下差异显著(p<0.05);**表示在α=0.01下差异显著(p<0.01);2)A为曝气量;B为水力停留时间;C为曝气间歇时间;D为曝气位置。 表 6 耦合技术处理药物污染河水中常规污染物的去除率
Table 6. The removal rate of conventional pollutants with Coupled technology
实验内容 药物质量浓度/( ng·L−1) TN去除率/% -N去除率/%${\rm{NH}}_4^{+} $ TP去除率/% COD去除率/% 曝气实验 1 000 9.7±0.3 10.6±0.6 8.3±0.3 20.7±2.7 曝气实验 150 4.0±0.1 7.5±1.2 7.4±1.3 43.5±4.45 湿地实验 1 000 25.5±3.5 32.7±1.7 36.6±5.4 16.3±1.7 湿地实验 150 19.1±1.0 34.5±1.5 19.5±2.5 23.6±6.4 耦合实验 1 000 37.3±1.3(P=0.167)1) 50.7±0.7(P=0.064) 65.2±1.2*(P=0.346) 36.4±0.6(P=0.083) 耦合实验 150 44.2±3.0(P=0.240) 62.7±2.7(P=0.068) 53.9±1.1(P=0.039)2) 48.5±3.5(P=0.386) 响应面验证实验 — 55.6±7.2 78.7±4.0 68.1±5.9 53.4±4.2 注:1)耦合实验与验证实验结果进行独立样本t检验,所得P值且不存在显著性差异,即P>0.05;2)加粗P值表示存在显著性差异,即P<0.05;3)“*”表示两个浓度级别耦合实验结果进行独立样本t检验存在显著性差异。 -
[1] 2019年《中国生态环境状况公报》(摘录一) [J]. 环境保护, 2020, 48(13): 57-9. [2] 闫先收. 小清河流域典型抗生素分布、来源及风险评价[D]. 济南: 山东师范大学, 2018. [3] R H S, PAUL K, E B L. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems[J]. Environmental science & technology, 2013, 47(2): 661-77. [4] NKOOM M, LU G, LIU J. Occurrence and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake, China: a review[J]. Environ Sci Process Impacts, 2018, 20(12): 1640-8. doi: 10.1039/C8EM00327K [5] HENA S, GUTIERREZ L, CROU J-P, et al. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review[J]. Journal of Hazardous Materials, 2021, 403: 124041. doi: 10.1016/j.jhazmat.2020.124041 [6] LI Y, ZHANG L, LIU X, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China[J]. Science of the Total Environment, 2019, 658: 333-42. doi: 10.1016/j.scitotenv.2018.12.048 [7] SUN J, LUO Q, WANG D, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China[J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140. doi: 10.1016/j.ecoenv.2015.03.032 [8] HU X L, BAO Y F, HU J J, et al. Occurrence of 25 pharmaceuticals in Taihu Lake and their removal from two urban drinking water treatment plants and a constructed wetland[J]. Environmental Science and Pollution Research International, 2017, 24(17): 14889-14902. doi: 10.1007/s11356-017-8830-y [9] HE S, DONG D, ZHANG X, et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China)[J]. Environmental Science and Pollution Research, 2018, 25(24): 24003-24012. doi: 10.1007/s11356-018-2459-3 [10] 罗丽婵. 城市环境中雨水径流PPCPs污染特性及其控制的研究[D]. 北京: 清华大学, 2017. [11] 李力, 朱栟, 白瑶, 等. 河道水旁路处理中试工艺中PPCPs的去除效果及机制[J]. 环境科学, 2018, 39(4): 1637-44. [12] 崔叶峰. 钦州湾近海及入海河流典型药品与个人护理品(PPCPs)污染特征与生态风险评估[D]. 南宁: 广西大学, 2019. [13] 李杨克. 表面流湿地处理微污染河水长期运行效能研究[D]. 南京: 东南大学, 2017. [14] 赵庆习. 水下推流曝气装置结构设计及优化研究[D]. 长春: 吉林大学, 2020. [15] GUO L, TIANYU H, YANHUI L, et al. Study on the purification effect of aeration-enhanced horizontal subsurface-flow constructed wetland on polluted urban river water[J]. Environmental science and pollution research international, 2019, 26(13): 12867-12880. [16] DONG H, QIANG Z, LI T, et al. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water[J]. Journal of Environmental Sciences, 2012, 24(4): 596-601. doi: 10.1016/S1001-0742(11)60804-8 [17] 马书占. 垂直潜流湿地间歇性增氧对人工湿地污水净化效率的优化研究[D]. 苏州: 苏州科技大学, 2016. [18] TANG X, HUANG S, SCHOLZ M, et al. Nutrient removal in vertical subsurface flow constructed wetlands treating eutrophic river water[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(7-8): 27-739. [19] 吴婧嘉. 微曝气垂直流湿地净化城市污染内河水质研究[D]. 杭州: 浙江大学, 2014. [20] ONG S A, UCHIYAMA K, INADAMA D, et al. Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration[J]. Bioresource Technology, 2010, 101(23): 9049-9057. doi: 10.1016/j.biortech.2010.07.034 [21] AL-BALDAWI I A, ABDULLAH S R S, SUJA F, et al. Effect of aeration on hydrocarbon phytoremediation capability in pilot sub-surface flow constructed wetland operation[J]. Ecological Engineering, 2013, 61: 496-500. doi: 10.1016/j.ecoleng.2013.10.017 [22] XINWEN Z, ZHEN H, JIAN Z, et al. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms[J]. Bioresource Technology, 2018, 250: 94-101. doi: 10.1016/j.biortech.2017.08.172 [23] 李增辉. 宜兴市莲花荡水系与大港河生态健康评价[D]. 北京: 北京林业大学, 2018. [24] 康鹏亮, 黄廷林, 张海涵, 等. 西安市典型景观水体水质及反硝化细菌种群结构[J]. 环境科学, 2017, 38(12): 5174-83. [25] 王佳敏, 李涵, 张文凯, 等. 两种比色法检测水体中微量氨含量的比较研究[J]. 大学化学, 2019, 34(3): 36-41. doi: 10.3866/PKU.DXHX201807034 [26] 于磊. 3种挺水植物在不同曝气深度下的生长状况以及对水体中氮、磷去除效果的研究[D]. 上海: 华东师范大学, 2017. [27] 汪健, 李怀正, 甄葆崇, 等. 间歇曝气对垂直潜流人工湿地脱氮效果的影响[J]. 环境科学, 2016, 37(3): 980-7. [28] 李昊航. LM系统对生活污水污染物去除规律分析及经验模型建立[D]. 南宁: 广西大学, 2019. [29] 王延吉. 人工湿地模拟系统中毒死蜱降解条件优化及微生物群落结构分析[D]. 延吉: 延边大学, 2018. [30] ZAINAL B S, DANAEE M, MOHD N S, et al. Effects of temperature and dark fermentation effluent on biomethane production in a two-stage up-flow anaerobic sludge fixed-film (UASFF) bioreactor[J]. Fuel, 2020, 263: 116729. doi: 10.1016/j.fuel.2019.116729 [31] 马剑敏, 张永静, 马顷, 等. 曝气对两种人工湿地污水净化效果的影响[J]. 环境工程学报, 2011, 5(2): 315-21. [32] 潘玮. 水力条件对人工湿地去污效果的影响研究及中试验证[D]. 南京: 南京大学, 2015. [33] LI Y, ZHU G, NG W J, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism[J]. Science of the Total Environment, 2014, 468-469: 908-932. doi: 10.1016/j.scitotenv.2013.09.018 [34] ZWIENER C, FRIMMEL F H. Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac[J]. Science of the Total Environment, 2003, 309(1): 201-211. [35] SUAREZ S, LEMA J M, OMIL F. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions[J]. Water Research, 2010, 44(10): 3214-3224. doi: 10.1016/j.watres.2010.02.040 [36] MINH N P, MUHAMMAD A, INAAM U, et al. Removal of pharmaceuticals and personal care products using constructed wetlands: Effective plant-bacteria synergism may enhance degradation efficiency[J]. Environmental science and pollution research international, 2019, 26(21): 21109-21126. doi: 10.1007/s11356-019-05320-w [37] MA J, CUI Y, ZHANG W, et al. Fate of antibiotics and the related antibiotic resistance genes during sludge stabilization in sludge treatment wetlands[J]. Chemosphere, 2019, 224: 502-508. doi: 10.1016/j.chemosphere.2019.02.168 [38] ZHANG D Q, GERSBERG R M, HUA T, et al. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates[J]. Chemosphere, 2012, 87(3): 273-277. doi: 10.1016/j.chemosphere.2011.12.067 [39] 杨怡潇. 水钠锰矿沙人工湿地处理典型PPCPs废水的效果及机制研究[D]. 济南: 山东大学, 2019. [40] 秦秦, 宋科, 孙丽娟, 等. 药品和个人护理品(PPCPs)在土壤中的迁移转化和毒性效应研究进展[J]. 生态环境学报, 2019, 28(5): 1046-54.