[1] 2019年《中国生态环境状况公报》(摘录一) [J]. 环境保护, 2020, 48(13): 57-9.
[2] 闫先收. 小清河流域典型抗生素分布、来源及风险评价[D]. 济南: 山东师范大学, 2018.
[3] R H S, PAUL K, E B L. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems[J]. Environmental science & technology, 2013, 47(2): 661-77.
[4] NKOOM M, LU G, LIU J. Occurrence and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake, China: a review[J]. Environ Sci Process Impacts, 2018, 20(12): 1640-8. doi: 10.1039/C8EM00327K
[5] HENA S, GUTIERREZ L, CROU J-P, et al. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review[J]. Journal of Hazardous Materials, 2021, 403: 124041. doi: 10.1016/j.jhazmat.2020.124041
[6] LI Y, ZHANG L, LIU X, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China[J]. Science of the Total Environment, 2019, 658: 333-42. doi: 10.1016/j.scitotenv.2018.12.048
[7] SUN J, LUO Q, WANG D, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China[J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140. doi: 10.1016/j.ecoenv.2015.03.032
[8] HU X L, BAO Y F, HU J J, et al. Occurrence of 25 pharmaceuticals in Taihu Lake and their removal from two urban drinking water treatment plants and a constructed wetland[J]. Environmental Science and Pollution Research International, 2017, 24(17): 14889-14902. doi: 10.1007/s11356-017-8830-y
[9] HE S, DONG D, ZHANG X, et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China)[J]. Environmental Science and Pollution Research, 2018, 25(24): 24003-24012. doi: 10.1007/s11356-018-2459-3
[10] 罗丽婵. 城市环境中雨水径流PPCPs污染特性及其控制的研究[D]. 北京: 清华大学, 2017.
[11] 李力, 朱栟, 白瑶, 等. 河道水旁路处理中试工艺中PPCPs的去除效果及机制[J]. 环境科学, 2018, 39(4): 1637-44.
[12] 崔叶峰. 钦州湾近海及入海河流典型药品与个人护理品(PPCPs)污染特征与生态风险评估[D]. 南宁: 广西大学, 2019.
[13] 李杨克. 表面流湿地处理微污染河水长期运行效能研究[D]. 南京: 东南大学, 2017.
[14] 赵庆习. 水下推流曝气装置结构设计及优化研究[D]. 长春: 吉林大学, 2020.
[15] GUO L, TIANYU H, YANHUI L, et al. Study on the purification effect of aeration-enhanced horizontal subsurface-flow constructed wetland on polluted urban river water[J]. Environmental science and pollution research international, 2019, 26(13): 12867-12880.
[16] DONG H, QIANG Z, LI T, et al. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water[J]. Journal of Environmental Sciences, 2012, 24(4): 596-601. doi: 10.1016/S1001-0742(11)60804-8
[17] 马书占. 垂直潜流湿地间歇性增氧对人工湿地污水净化效率的优化研究[D]. 苏州: 苏州科技大学, 2016.
[18] TANG X, HUANG S, SCHOLZ M, et al. Nutrient removal in vertical subsurface flow constructed wetlands treating eutrophic river water[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(7-8): 27-739.
[19] 吴婧嘉. 微曝气垂直流湿地净化城市污染内河水质研究[D]. 杭州: 浙江大学, 2014.
[20] ONG S A, UCHIYAMA K, INADAMA D, et al. Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration[J]. Bioresource Technology, 2010, 101(23): 9049-9057. doi: 10.1016/j.biortech.2010.07.034
[21] AL-BALDAWI I A, ABDULLAH S R S, SUJA F, et al. Effect of aeration on hydrocarbon phytoremediation capability in pilot sub-surface flow constructed wetland operation[J]. Ecological Engineering, 2013, 61: 496-500. doi: 10.1016/j.ecoleng.2013.10.017
[22] XINWEN Z, ZHEN H, JIAN Z, et al. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms[J]. Bioresource Technology, 2018, 250: 94-101. doi: 10.1016/j.biortech.2017.08.172
[23] 李增辉. 宜兴市莲花荡水系与大港河生态健康评价[D]. 北京: 北京林业大学, 2018.
[24] 康鹏亮, 黄廷林, 张海涵, 等. 西安市典型景观水体水质及反硝化细菌种群结构[J]. 环境科学, 2017, 38(12): 5174-83.
[25] 王佳敏, 李涵, 张文凯, 等. 两种比色法检测水体中微量氨含量的比较研究[J]. 大学化学, 2019, 34(3): 36-41. doi: 10.3866/PKU.DXHX201807034
[26] 于磊. 3种挺水植物在不同曝气深度下的生长状况以及对水体中氮、磷去除效果的研究[D]. 上海: 华东师范大学, 2017.
[27] 汪健, 李怀正, 甄葆崇, 等. 间歇曝气对垂直潜流人工湿地脱氮效果的影响[J]. 环境科学, 2016, 37(3): 980-7.
[28] 李昊航. LM系统对生活污水污染物去除规律分析及经验模型建立[D]. 南宁: 广西大学, 2019.
[29] 王延吉. 人工湿地模拟系统中毒死蜱降解条件优化及微生物群落结构分析[D]. 延吉: 延边大学, 2018.
[30] ZAINAL B S, DANAEE M, MOHD N S, et al. Effects of temperature and dark fermentation effluent on biomethane production in a two-stage up-flow anaerobic sludge fixed-film (UASFF) bioreactor[J]. Fuel, 2020, 263: 116729. doi: 10.1016/j.fuel.2019.116729
[31] 马剑敏, 张永静, 马顷, 等. 曝气对两种人工湿地污水净化效果的影响[J]. 环境工程学报, 2011, 5(2): 315-21.
[32] 潘玮. 水力条件对人工湿地去污效果的影响研究及中试验证[D]. 南京: 南京大学, 2015.
[33] LI Y, ZHU G, NG W J, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism[J]. Science of the Total Environment, 2014, 468-469: 908-932. doi: 10.1016/j.scitotenv.2013.09.018
[34] ZWIENER C, FRIMMEL F H. Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac[J]. Science of the Total Environment, 2003, 309(1): 201-211.
[35] SUAREZ S, LEMA J M, OMIL F. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions[J]. Water Research, 2010, 44(10): 3214-3224. doi: 10.1016/j.watres.2010.02.040
[36] MINH N P, MUHAMMAD A, INAAM U, et al. Removal of pharmaceuticals and personal care products using constructed wetlands: Effective plant-bacteria synergism may enhance degradation efficiency[J]. Environmental science and pollution research international, 2019, 26(21): 21109-21126. doi: 10.1007/s11356-019-05320-w
[37] MA J, CUI Y, ZHANG W, et al. Fate of antibiotics and the related antibiotic resistance genes during sludge stabilization in sludge treatment wetlands[J]. Chemosphere, 2019, 224: 502-508. doi: 10.1016/j.chemosphere.2019.02.168
[38] ZHANG D Q, GERSBERG R M, HUA T, et al. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates[J]. Chemosphere, 2012, 87(3): 273-277. doi: 10.1016/j.chemosphere.2011.12.067
[39] 杨怡潇. 水钠锰矿沙人工湿地处理典型PPCPs废水的效果及机制研究[D]. 济南: 山东大学, 2019.
[40] 秦秦, 宋科, 孙丽娟, 等. 药品和个人护理品(PPCPs)在土壤中的迁移转化和毒性效应研究进展[J]. 生态环境学报, 2019, 28(5): 1046-54.