-
随着原油劣质化加剧,石化行业含油废水水质呈现高浓度、难降解、生物毒性大的发展趋势[1-3];加之环境承载负荷降低,环保排放标准日趋严苛,导致含油废水处理压力不断增加[4]。含油废水处理通常采用预处理、生物处理和深度处理的组合工艺。相对生物处理和深度处理受到的高度关注和取得的长足进步[5-6],以“均质、隔油、气浮”为代表的常规预处理工艺及设施相对固化[7-8],其他诸如离心、旋流等常用预处理单元,也都主要通过物理分离与化学絮凝相结合以去除来水中的油分和悬浮物,但也同时存在产生浮渣等危废、消耗大量药剂、抗冲击性能差、操作繁琐、逸散VOCs等问题[9-13],模式消极且滋生邻避效应。
石化含油废水中包含浮油、乳化油、悬浮物等复合污染物,其脱固除油单元关乎下游生化单元的稳定运行、石化污水处理厂末端的达标排放以及炼化一体化企业的绿色低碳发展和区域环境与生态质量。依托材料、装备、控制等基础学科的持续发展,含油废水脱固除油理论体系、单元技术及装备研制取得了显著进步,相继衍生了组合装备结构优化、环保型药剂应用等代表性迭代成果,促成了资源化磁吸附、抗污染高效膜、电絮凝等新兴技术,但同时也普遍因技术成熟度不足而影响了实践应用。其中,深层过滤作为相对传统但成熟的污水处理工艺,目前大多用于尾水深度处理[14],而鲜有应用至预处理环节的报道。该技术的主要瓶颈包括受限于原水非溶解态污染物浓度所导致的分离负荷负担和连续高效反洗再生[15],而解决的出路则在于持续改进深层过滤介质和优化分离器结构。在过滤介质材质方面,胡桃壳、花生壳、锯末等生物质基材料作为相对成熟的选择[16],其可通过截滤、吸附和聚并以实现来水中油分的分离;同时也可通过制备特定尺寸或特定密度的均一化聚合材料颗粒,以避免过滤或反洗过程出现的颗粒破碎而影响分离效率。介质过滤设备结构设计则相对固定,目前的主流设计仍采用固定床结构维持床层稳定,并通过逆向来水带出床层中截滤的污染物,但深层介质过滤始终无法满足饱和吸附容量和乳化油分离等实际工程需求。进一步通过颗粒介质表面改性以实现特定的亲疏水性,包括超疏水强吸附改性等可重复使用的材料[17-18],则为含油废水过滤处理提供了全新的思路。但现有的介质过滤过程主要集中在单一床层介质,或者以调整孔道结构为导向的多介质床层,目前未见从颗粒介质接触微界面调控的角度尝试多介质过滤过程。限制深层过滤用于含油废水预处理的另一瓶颈则是分离装备的结构优化。常规的固定床结构在介质颗粒再生过程中,通过床层流化沸腾无法克服含油废水中油分或油泥对颗粒介质的粘附力,因而连续运行将造成分离效率持续衰减。通过多介质颗粒接触界面调控和分离设备介质再生强化,是实现含油废水深层过滤预处理的关键。
针对实际含油废水处理过程存在的预处理单元消耗大量化学絮凝药剂并相应产生危废、常规过滤单元无法实现油份与悬浮物协同分离等技术瓶颈,本研究通过改性石英砂颗粒,并与石英砂混合构建异质结颗粒群,系统开展了异质结颗粒群界面属性调控及其分离机理研究;同时,通过耦合异质结颗粒群微通道分离和旋流再生开发沸腾床分离器,并针对实际含油废水开展长周期分离性能及床层介质再生实验研究,以确保实现含油废水预处理过程的化学药剂近零消耗、危险废弃物近零填埋与污染物近零排放。
含油废水异质结微通道分离机理及实验
Mechanism and experiment of micro-channel filtration by heterostructure media particles for oily wastewater treatment
-
摘要: 石油炼制废水等石化行业含油废水普遍存在油分与悬浮物高度复合、油分乳化且水质剧烈波动等特征,其达标处理成为关乎企业绿色发展与产能拓展的关键因素。针对含油废水分离资源化需求,采用聚二甲基硅氧烷(PDMS)、四氢呋喃(THF)、聚甲基丙烯酸甲酯(PMMA)、固化剂等配制涂敷剂,通过喷涂石英砂制备了改性颗粒,并混合常规石英砂构建了异质结颗粒群,由此开发出异质结微通道沸腾床分离实验装置,考察了其对复合污染乳化废水中污染物的分离效果。结果表明:涂覆改性颗粒的接触角明显增加,且改性颗粒与油滴接触的微界面动态识别过程表明其较原始石英砂的疏油性显著增加;异质结颗粒群经过撕裂、剥离和聚并过程,将乳化液中10 μm以下的细小油滴有效聚结并确保废水油分去除率超过92%。针对油分和悬浮物质量浓度不超过50 000 mg·L−1的实际石化废水,现场10 m3·h−1规模的异质结微通道沸腾床侧线实验结果表明,在常规工况和波动工况条件下,其出水平均油分质量浓度分别为11.4 mg·L−1和18.2 mg·L−1,悬浮物质量浓度则分别降至21.3 mg·L−1和29.1 mg·L−1,且经过20 min反洗后沸腾床分离器满足长期稳定运行要求。Abstract: The petroleum refinery wastewater and other oily wastewater were characterized as the mixture of oil and suspended solids (SS), oil emulsification, and severe water quality fluctuations. Its compliance treatment has become a key factor related to the green development of enterprises and the expansion of production capacity. In response to the resource utilization of oily wastewater, polydimethylsiloxane (PDMS), tetrahydrofuran (THF), polymethylmethacrylate (PMMA) and curing agent were used to configure the coating agents for sand modification. The raw and modified sands were mixed as heterostructure media particles (HMPs) and filled in the fluidized bed for micro-channel filtration of oily wastewater. The results showed that the contact angle of the modified sand increased significantly as well as its oleophobicity through dynamic recognition of the micro-interface in contact. After tearing, peeling and coalescence of emulsified oil in heterostructure media particles, the fine oil droplets below 10 μm in the emulsion were effectively coalesced and the oil removal efficiency exceeded 92%. A 10 m3·h−−1 pilot-scale microchannel fluidized bed separator with heterostructure media particles was set up to treat the actual petroleum refinery wastewater with oil and SS contents over 50 000 mg·L−1. Under the normal and fluctuating conditions, the average effluent oil contents decreased to 11.4 mg·L-1 and 18.2 mg·L−1, as well as the SS contents decreased to 21.3 mg·L−1 and 29.1 mg·L−1, respectively. The fluidized bed separator can also satisfy the long-term stable operation requirements after 20 min backwashing.
-
-
[1] ANI I J, AKPAN U G, OLUTOYE M A, et al. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development[J]. Journal of Cleaner Production, 2018, 205: 930-954. doi: 10.1016/j.jclepro.2018.08.189 [2] JAFARINEJAD S, JIANG S C. Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters[J]. Journal of Environmental Chemical Engineering, 2019, 7: 103326. doi: 10.1016/j.jece.2019.103326 [3] TIAN X, SONG Y, SHEN Z, et al. A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment[J]. Journal of Cleaner Production, 2020, 245: 118692. doi: 10.1016/j.jclepro.2019.118692 [4] HAN G, WIT J S, CHUNG J S. Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode[J]. Water Research, 2015, 81: 54-63. doi: 10.1016/j.watres.2015.05.048 [5] COELHO A, CASTRO A V, DEZOTTI M, et al. Treatment of petroleum refinery sourwater by advanced oxidation processes[J]. Journal of Hazardous Materials, 2006, 137: 178-184. doi: 10.1016/j.jhazmat.2006.01.051 [6] ALIFF RADZUAN M R, ABIA-BITEO BELOPE M A, THORPE R B. Removal of fine oil droplets from oil-in-water mixtures by dissolved air flotation[J]. Chemical Engineering Research Design, 2016, 115: 19-33. doi: 10.1016/j.cherd.2016.09.013 [7] MOOSAI R, DAWE R A. Gas attachment of oil droplets for gas flotation for oily wastewater cleanup[J]. Separation Purification Technology, 2003, 33: 303-314. doi: 10.1016/S1383-5866(03)00091-1 [8] SANTO C E, VILAR V J P, BOTELHO C M S, et al. Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant[J]. Chemical Engineering Journal, 2012, 183: 117-123. doi: 10.1016/j.cej.2011.12.041 [9] SUN Y X, LIU Y, XU B W, et al. Simultaneously achieving high-effective oil-water separation and filter media regeneration by facile and highly hydrophobic sand coating[J]. Science of the Total Environment, 2021, 800: 149488. doi: 10.1016/j.scitotenv.2021.149488 [10] SUN Y X, LIU Y, CHEN J Q, et al. Physical pretreatment of petroleum refinery wastewater instead of chemicals addition for collaborative removal of oil and suspended solids[J]. Journal of Cleaner Production, 2021, 278: 123821. doi: 10.1016/j.jclepro.2020.123821 [11] SATHTHASIVAM J, LOGANATHAN K, SARP S. An overview of oilewater separation using gas flotation systems[J]. Chemosphere, 2016, 144: 671-680. doi: 10.1016/j.chemosphere.2015.08.087 [12] 王赫名, 桂程, 王刚, 等. 单室空气阴极微生物燃料电池处理含油废水[J]. 环境科学与技术, 2020, 43(11): 148-153. [13] 何少林, 陈辉, 于景琦, 等. 石化废水挥发性有机物逸散量的估算方法[J]. 化工环保, 2015, 35(6): 620-624. doi: 10.3969/j.issn.1006-1878.2015.06.013 [14] CAMBIELLA Á, ORTEA E, RíOS G, et al. Treatment of oil-in- water emulsions: Performance of a sawdust bed filter[J]. Journal of Hazardous Materials, 2006, 131: 195-199. doi: 10.1016/j.jhazmat.2005.09.023 [15] KNAPIK E, STOPA J. Fibrous deep-bed filtration for oil/water separation using sun-flower pith as filter media[J]. Journal of Ecological Engineering, 2018, 121: 44-52. doi: 10.1016/j.ecoleng.2017.07.021 [16] LIU H, HUANG J, CHEN Z, et al. Robust trans-lucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J]. Chemical Engineering Journal, 2017, 330: 26-35. doi: 10.1016/j.cej.2017.07.114 [17] SRIRAM S, KUMAR A. Separation of oil-water via porous PMMA/SiO2 nanoparticles superhydrophobic surface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 563: 271-279. [18] CAO C, CHENG J. Fabrication of robust surfaces with special wettability on porous copper substrates for various oil/water separations[J]. Chemical Engineering Journal, 2018, 347: 585-594. doi: 10.1016/j.cej.2018.04.146 [19] LU H, XU X, XIE L S, et al. Deformation and crawling of oil drop on solid substrates by shearing liquid[J]. Chemical Engineering Science, 2019, 195: 720-729. doi: 10.1016/j.ces.2018.10.017 [20] HUANG Y, LI J P, ZHANG Y H, et al. High-speed particle rotation for coating oil removal by hydrocyclone[J]. Separation and Purification Technology, 2017, 177: 263-271. doi: 10.1016/j.seppur.2016.12.001