-
如果未达标处理的生活废水直接排入河流和湖泊中,其中所含的过量悬浮物、氨氮和磷等污染物会引起河流水体富营养化,从而导致水体耗氧与供氧失衡,自净能力减弱,水质逐渐恶坏,最终形成季节性或终年黑臭水体[1]。黑臭水体不仅使水体失去了原有的使用价值和生态服务功能,也直接威胁到居民的身心健康。
目前,治理黑臭水体的主要方法包括底泥疏浚[2]、人工曝气[3]、生物修复[4]等。底泥疏浚能够有效去除水体中的内源污染物,但其工程量大、成本高,也会对河道底栖生物产生一定负面影响。人工曝气可增加水体中空气或氧气含量,但不适用于重度黑臭水体;同时,此方法还会消耗大量电能。生物修复具有无害、稳定的优点,但对水体中pH和温度等因素要求较高,这极大地限制了其在黑臭水体处理中的应用。因此,寻求一种能够实现同步去除黑臭水体中内源污染物且成本低廉、反应条件温和的治理技术具有重要意义。
絮凝技术在水处理工艺中应用广泛,是去除胶体悬浮物最经济有效的方法。聚合硫酸铁(PFS)作为一种常见的絮凝剂,不仅能通过电荷中和作用使胶体失稳沉降,还能与磷产生沉淀,形成微絮体[5]。而PFS与助凝剂聚丙烯酰胺(PAM)配合使用后,有利于微絮体“桥连”而形成粗大絮体,加快絮体的沉降速度,减少絮凝剂的使用量。但传统絮凝过程仍存在絮凝沉降时间长的缺陷,导致其适用范围受限。磁絮凝技术是指通过向絮体中加入磁粉,然后借助外磁场力作用以实现絮体快速沉降的一项技术[6]。因此,本文通过将一种常用磁粉(MPs,主要成分为Fe3O4)与上述PFS+PAM絮凝剂进行复配,以克服传统絮凝剂沉降时间长的缺点。然而,单纯的絮凝技术难以实现对黑臭水体中氨氮的去除[7],因此,需要联用吸附技术。
壳聚糖是一种天然的高分子材料[8],可用作吸附剂,其分子结构含有大量的—NH2和—OH等活性集团,性质活泼,可以对其进行烷基化、酰化、接枝、质子化等多种改性以增强其吸附性能[9]。但壳聚糖机械强度较低,在使用过程中容易流失。因此,选择一种合适的载体来负载壳聚糖,对提高其稳定性至关重要。众所周知,沸石是一种分布广泛、具有多孔道、高比表面积的硅铝酸盐矿物,其基本结构为硅氧四面体和铝氧四面体。同时,沸石不仅是一种良好的载体,还对水体中NH4+等阳离子具有较好的吸附去除效果[10]。因此,本研究拟将壳聚糖质化改性后与沸石结合,制备成球状吸附剂,以期增加壳聚糖的机械强度和稳定性,用以实现同步去除氨氮和总磷(TP)。
综上所述,本文采用聚合硫酸铁(PFS)、磁粉(MPs)和聚丙烯酰胺(PAM)作为磁复配絮凝剂,质化壳聚糖-沸石(PCZ)作为吸附剂,考察了磁絮凝-吸附技术同步去除黑臭水体中浊度、氨氮和TP的效果,分析了PFS、MPs和PAM的复配使用对浊度和TP的去除机理以及PCZ对氨氮和TP的去除机理,以期为实现黑臭水体中浊度、氨氮和TP的同步去除提供参考。
磁絮凝-吸附技术对黑臭水体中浊度、氨氮和总磷的去除效果及机理
Performance and mechanism of turbidity, ammonia nitrogen and total phosphorus removal from black and odorous water by magnetic flocculation-adsorption technology
-
摘要: 采用磁絮凝-吸附技术开展了同步去除黑臭水体浊度、氨氮和总磷(TP)实验。在磁絮凝阶段,通过聚合硫酸铁(PFS)、磁粉(MPs)和聚丙烯酰胺(PAM)复配使用,利用电荷中和作用去除浊度和TP;同时,利用化学吸附沉淀去除TP;在此阶段中,当PFS、MPs、PAM的投加量分别为16.00、100.00、2.20 mg·L−1且以PFS+MPs在快速阶段先投加,PAM在慢速阶段后投加的顺序投配时,絮凝效果达到最佳。在吸附阶段,吸附剂质化壳聚糖-沸石(PCZ)主要通过离子交换作用去除氨氮以及通过静电吸附作用去除TP;当PCZ的投加量为1.25 g·L−1时吸附效果达到最佳。利用所研究的磁絮凝-吸附技术对实际黑臭水体进行处理,其出水浊度能达到城镇污水处理厂污染物排放一级标准(≤10.00 NTU),TP和氨氮也分别能满足地表水环境质量Ⅲ类标准(≤0.20 mg·L−1)和Ⅴ类标准(≤2.00 mg·L−1)要求。Abstract: In this paper, a magnetic flocculation−adsorption technology was studied for simultaneous removal of turbidity, ammonia nitrogen and total phosphorus (TP) in black and odorous water. At the magnetic flocculation stage, polyferric sulfate (PFS), magnetic powder (MPs) and polyacrylamide (PAM) were jointly used to remove turbidity and TP through charge neutralization, especially to remove TP through chemical adsorption precipitation. In the process of magnetic flocculating, the optimal dosages of PFS, MPs and PAM were 16.00, 100.00 and 2.20 mg·L−1, respectively. Both PFS and MPs were added first at the rapid mixing stage, then PAM was added later at the slow mixing stage, the best flocculation effect occurred. At the adsorption stage, protonated chitosan combined with zeolite (PCZ) was used to remove ammonia nitrogen and TP by ion exchange and electrostatic adsorption. At PCZ dosage of 1.25 g·L−1, the best adsorption performance occurred. When this magnetic flocculation-adsorption technology was used to treat the actual black and odorous water, the turbidity of the treated wastewater could meet the class I standard of pollutant discharge of urban sewage treatment plant (≤10.00 NTU), and TP and ammonia nitrogen could also meet the class III standard (≤0.20 mg·L−1) and class V standard (≤2.00 mg·L−1) of surface water environmental quality, respectively.
-
表 1 3种材料的比表面积与孔性质
Table 1. Surface areas and pore properties of three materials
材料 比表面积/(m2·g−1) 平均孔径/nm 总孔容积
/(10−3 cm3·g−1)质化壳聚糖 1.34 17.02 5.70 沸石 2.46 15.01 9.50 质化壳聚糖-沸石 2.24 15.19 8.40 表 2 PCZ对氨氮和TP吸附前后的EDS能谱分析结果
Table 2. EDS analyses of PCZ before and after NH4+ and TP adsorption
元素 吸附前 吸附后 质量分数/% 原子分数/% 质量分数/% 原子分数/% C 23.37 30.24 28.70 34.78 N 10.06 11.16 13.15 13.67 O 51.03 49.56 54.45 49.53 Na 4.98 3.37 0.19 0.12 Mg 2.55 1.63 1.24 0.74 Al 1.87 1.08 0.89 0.48 Si 3.57 1.97 1.14 0.59 Ca 2.57 1.00 0.24 0.09 表 3 实际水体处理前后水质情况
Table 3. Quality of actual water before and after treatment
实际水体 pH 浊度
/NTU正磷盐
/(mg·L−1)总磷
/(mg·L−1)氨氮
/(mg·L−1)左干渠原水
(轻度黑臭)7.50 10.10 0.46 0.49 7.19 左干渠原水
絮凝−吸附后7.62 2.90 0.10 0.10 1.45 和平公园原水
(轻度黑臭)7.20 18.00 0.12 0.14 1.55 和平公园原水
絮凝−吸附后7.34 3.00 0.06 0.09 0.55 爱劳渠原水
(重度黑臭)7.02 54.00 0.38 0.53 13.03 爱劳渠原水
絮凝−吸附后7.26 3.00 0.06 0.09 2.02 -
[1] WANG X, WANG Y G, SUN C H, et al. Formation mechanism and assessment method for urban black and odorous water body: A review[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1331-1340. [2] 曹承进, 陈振楼, 王军, 等. 城市黑臭河道底泥生态疏浚技术进展[J]. 华东师范大学学报(自然科学版), 2011(1): 32-42. [3] 王海. 城市污水处理厂曝气系统节能降耗影响因素及控制模式研究[D]. 青岛: 青岛理工大学, 2010. [4] ROMANTSCHUK M, SARAND I, PET N T, et al. Means to improve the effect of in situ bioremediation of contaminated soil: An overview of novel approaches[J]. Environmental Pollution, 2000, 107(2): 179-185. doi: 10.1016/S0269-7491(99)00136-0 [5] AGBOVI H K, WILSON L D. Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater[J]. Carbohydrate Polymers, 2018, 189: 360-370. doi: 10.1016/j.carbpol.2018.02.024 [6] LV M, ZHANG Z H, ZENG J Y, et al. Roles of magnetic particles in magnetic seeding coagulation-flocculation process for surface water treatment[J]. Separation and Purification Technology, 2019, 212: 337-343. doi: 10.1016/j.seppur.2018.11.011 [7] ZHENG H, ZHU S, JIANG T, et al. Investigations of coagulation-flocculation process by performance optimization, model prediction and fractal structure of flocs[J]. Desalination, 2011, 269: 148-156. doi: 10.1016/j.desal.2010.10.054 [8] BHATNAGAR A, SILLANPAA M. Application of chitin and chitosan derivatives for the detoxification of water and wastewater: A short review[J]. Advances in Colloid & Interface Science, 2009, 152: 26. [9] BRATSKAYA S Y, AZAROVA Y A, MATOCHKINA E G, et al. N-(2-(2-pyridyl) ethyl) chitosan: Synthesis, characterization and sorption properties[J]. Carbohydrate Polymers, 2012, 87(1): 869-875. doi: 10.1016/j.carbpol.2011.08.081 [10] LI S, YUAN Z, GONG W, et al. The mechanism study of trace Cr(Ⅵ) removal from water using Fe0, nanorous modified with chitosan in porous anodic alumina[J]. Applied Surface Science, 2015, 328: 606-613. doi: 10.1016/j.apsusc.2014.12.094 [11] 段志辉, 李彦, 李光柱, 等. 磁絮凝深度处理生活污水[J]. 中国农村水利水电, 2019(7): 110-113. doi: 10.3969/j.issn.1007-2284.2019.07.021 [12] 陈瑜, 李军, 陈旭娈, 等. 磁絮凝强化污水处理的试验研究[J]. 中国给水排水, 2011, 27(17): 78-81. [13] 蔡吉祥, 翟露露, 薛江鹏, 等. 聚合硫酸铁对某纺织服装城废水除磷效果的影响[J]. 轻纺工业与技术, 2020, 49(7): 17-18. doi: 10.3969/j.issn.2095-0101.2020.07.007 [14] AHMAD A L, SUMATHI S, HAMEED B H. Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC[J]. Chemical Engineering Journal, 2006, 118: 99-105. doi: 10.1016/j.cej.2006.02.001 [15] AMBASHTA R D, SILLANPää M. Water purification using magnetic assistance: A review[J]. Journal of Hazardous Materials, 2010, 180: 38-49. doi: 10.1016/j.jhazmat.2010.04.105 [16] 柳富杰, 吴海玲, 韦巧艳, 等. 壳聚糖改性沸石对蔗糖溶液中酚酸的吸附性能研究[J]. 现代食品科技, 2021, 37(5): 180-187. [17] FUTALAN C M, KAN C C, DALIDA M L, et al. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite[J]. Carbohydrate Polymers, 2011, 83: 528-536. doi: 10.1016/j.carbpol.2010.08.013 [18] 仉春华, 王文君, 安晓雯等. 质子化壳聚糖的除磷性能[J]. 环境工程学报, 2013, 2: 568-572. [19] JAVAD K, VAHID J. Alginate beads impregnated with magnetic Chitosan@Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution[J]. International Journal of Biological Macromolecules, 2020, 154: 1426-1437. doi: 10.1016/j.ijbiomac.2019.11.024 [20] LIU H Y, YANG X G, ZHANG Y, et al. Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: An efficient and eco-friendly flocculant[J]. Water Research, 2014, 59: 165-171. doi: 10.1016/j.watres.2014.04.022 [21] LI S J, JIANG F, LEI T, et al. Phosphorus removal by in situ sprayed ferric chloride in Dianchi Lake: Efficiency, stability, and mechanism[J]. Process Safety and Environmental Protection, 2019, 131: 320-328. doi: 10.1016/j.psep.2019.09.021 [22] SRASRI K, THONGROJ M, CHAIJIRAAREE P, et al. Recovery potential of cellulose fiber from newspaper waste: An approach on magnetic cellulose aerogel for dye adsorption material[J]. International Journal of Biological Macromolecules, 2018, 119: 662-668. doi: 10.1016/j.ijbiomac.2018.07.123 [23] YANG W Y, ZHANG L, CHEN Y, et al. Improved electrochemical performances and magnetic properties of lithium iron phosphate with in situ Fe2P surface modification by the control of the reductive gas flow rate[J]. Applied Surface Science, 2020, 521: 146-389. [24] SUN D N, HONG X T, WU K M, et al. Simultaneous removal of ammonia and phosphate by electro-oxidation and electrocoagulation using RuO2–IrO2/Ti and microscale zero-valent iron composite electrode[J]. Water Research, 2020, 169: 115-239. [25] YANG K, ZHANG X, CHAO C, et al. In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution[J]. Carbohydrate Polymers, 2014, 107: 103-109. doi: 10.1016/j.carbpol.2014.02.001 [26] HE Y H, LIN H, DONG Y B, et al. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite[J]. Chemosphere, 2016, 164: 387-395. doi: 10.1016/j.chemosphere.2016.08.110