生物质电厂底渣对水溶液中Cu2+的吸附特性
Adsorption of Cu2+ in water by biomass ash
-
摘要: 本实验选用安徽某生物质发电厂燃烧炉底渣,通过研究吸附等温线、吸附时间以及电厂灰投加量和溶液初始pH对生物质灰吸附Cu2+的影响,以确定其对水溶液中Cu2+的吸附特性.结果表明,Cu2+初始浓度在50-100 mg·L-1范围内,Langmuir模型能很好地描述生物质电厂底渣对Cu2+的等温吸附规律,其理论饱和吸附量为20 mg·g-1,非常接近实际饱和吸附量19.45 mg·g-1.溶液初始pH值在2-6范围时,Cu2+的去除率随pH值的升高而增加,当pH在6附近时去除率最佳,接近100%.溶液Cu2+初始浓度为100 mg·L-1,体积为50 mL时,随生物质电厂底渣投加量增加,其对Cu2+的去除率上升,但去除效率下降,0.2 g左右可能是达到最佳去除效率和去除率的用量.溶液中Cu2+的去除率随吸附时间的增加而升高,用量越大达到吸附平衡的时间越短,但90 min左右时各个用量的去除率均趋于稳定.Abstract: In the experiment, biomass ash was selected as an adsorbent to investigate the effects of time, dosage and initial pH on the adsorption for Cu. Results showed that the Langmuir model could well fit the isothermal adsorption of Cu by biomass ash, and its calculated adsorption capacity (20 mg·g-1) was close to the experimental value (19.45mg·g-1). The removal rate of Cu2+ increased with the increase of initial pH value (2-8), and the removal rate (~100%) of Cu was the highest at pH~6. The removal rate of Cu2+ increased with the increase of the dosage, and the best removal efficiency for Cu was obtained with 0.2 g biomass ash. The removal rate of Cu2+ increased over time and adsorption reached equilibrium after 90 mins. Our results indicated biomass ash has strong adsorption capacity for Cu and could be used to remediating wastewater treatment.
-
Key words:
- biomass ash /
- Cu2+ /
- pH /
- dosage /
- adsorption time
-
-
[1] SNEZANA M S, ANA A L, JELENA V K, et al. Assessment of air pollution originating from copper smelter in Bor (Serbia)[J]. Environmental Earth Sciences, 2014:71:1651-1661. [2] 岳霞,刘魁,林夏露,等.中国七大主要水系重金属污染现况[J].预防医学论坛,2014,20(3):209-213. YUE X, LIU K, LIN X L, et al. Status of heavy metal pollution in seven major river systems in China[J]. Preventive Medicine Tribune,2014,20(3):209-213(in Chinese).
[3] 李博,刘述平.含铜废水的处理技术及研究进展[J].矿产综合利用,2008,10(5):33-37. LI B, LIU S P. The technologies for treating waste water containing copper and research progress[J]. Multipurpose Utilization of Mineral Resources, 2008,10(5):33-37(in Chinese).
[4] 黄君涛,熊帆,谢伟立,等.吸附法处理重金属废水研究进展[J].水处理技术,2006,32(2):9-12. HUANG J T, XIONG F, XIE W L, et al. Progress in researches on treatment of heavy metal waste water by adsorption process[J]. Technology of Water Treatment, 2006,32(2):9-12(in Chinese).
[5] TARELHOL A C, TEIXEIRA E R, SILVA D F R, et al. Characteristics of distinct ash flows in a biomass thermal power plant with bubbling fluidised bed combustor[J]. Energy,2015,90:387-402. [6] 舒颖,吴彩斌,胡雪峰,等. 粉煤灰活性炭处理含铜废水的性能[J].环境化学,2013,32(5):819-826. SHU Y, WU C B, HU X F, et al. Treatment Cu-containing wastewater by using activated carbon made from coal ash[J]. Environmental Chemistry, 2013,32(5):819-826(in Chinese).
[7] 贾艳萍姜成张羽汐,等.粉煤灰的特性及其去除水中重金属的研究进展[J].硅酸盐通报,2015,34(7):1896-1902. JIA Y P, JIANG C, ZHANG Y X, et al. Characteristics of fly ash and its study progress in removing heavy metals in wastewater[J]. Bulletin of the Chinese Ceramic Society, 2015,34(7):1896-1902(in Chinese).
[8] PIZARRO J M, CASTILLO X M N, JARA S B T, et al. Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica[J].Fuel,2015,156(15):96-102. [9] BOURLIVA A.N, MICHAILIDIS K P, SIKALIDIS C S T, et al. Adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ) and Pb(Ⅱ) onto natural bentonite:Study in mono- and multi-metal systems[J]. Environmental Earth Sciences,2015,73(9):5435-5444. [10] HO Y S, PORTER J F, MCKAY G. Equilibrium isotherm studies forthe sorption of divalent metal ions onto peat:Copper, nickel and lead single component systems[J]. Water Air and Soil Pollution,2002,141:1-33. [11] NETHAJI S, SIVASAMY A, MANDAL A B.Adsorption isotherms,kinetics and mechanism for the adsorption of cationic andanionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass[J]. International Journal of Environmental Science and Technology,2013,10:231-242. [12] 张再利,况群,贾晓珊. 花生壳吸附Pb2+、Cu2+、Cr3+、Cd2+、Ni2+的动力学和热力学研究[J]. 生态环境学报,2010, 19(12):2973-2977. ZHANG Z L, KUANG Q, JIA X S. Study on the kinetics and thermodynamics of Pb2+, Cu2+, Cr3+, Cd2+, Ni2+ adsorption onto peanut hull[J]. Ecology and Environmental Sciences, 2010,19(12):2973-2977(in Chinese).
[13] 甄豪波,胡勇有,程建华. 壳聚糖交联沸石小球对Cu2+、Ni2+及Cd2+的吸附特性[J]. 环境科学学报,2011,31(7):1369-1376. ZHEN H B, HU Y Y, CHENG J H. Adsorption of Cu2+,Ni2+ and Cd2+ by chitosan cross-linked zeolite beads[J]. Acta Scientiae Circumstantiae, 2011,31(7):1369-1376(in Chinese).
[14] ANNADRUAL G, RUEY S J, LEE D J. Adsorption of heavy metals from water using banana and orange peels[J].Water Science and Technology,2003,47(1):185-190. [15] MURAT K L, CISEM K B Y. Adsorption of heavy metal ions from aqueous solutions by bio-char,a by-product of pyrolysis[J].Applied Surface Science,2013,283:856-862. [16] AHMET S R, MUSTAFA T Z, DEMIRHAN C T, et al. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(Ⅱ) from aqueous solution onto Turkish kaolinite clay[J]. Journal of Hazardous Materials,2007,149(2):283-291. [17] SUSMITA S G, BHATTACHARYYA K G. Immobilization of Pb(Ⅱ), CdⅡ) and Ni(Ⅱ) ions on kaolinite and montmorillonite surfaces from aqueous medium[J]. Journal of Environmental Management,2008,87(1):46-58. [18] CETIN S, PEHLIVAN E. The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,298:83-87. [19] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学,2011,30(8):1411-1421. LI L, LIU Y, LU Y C, et al. Review on environmental effects and applications of biochar[J]. Environmental Chemistry, 2011,30(8):1411-1421(in Chinese).
[20] ARGUN M E, DURSUN S K, OZDEMIR C, et al. Heavy metal adsorption by modified oak sawdust:Thermodynamics and kinetics[J]. Journal of Hazardous Materials,2007,141(1):77-85. -

计量
- 文章访问数: 1817
- HTML全文浏览数: 1731
- PDF下载数: 519
- 施引文献: 0