咪唑类离子液体在β沸石上的吸附

赵瑰施, 张玲, 万玉秋, 许昭怡, 郑寿荣. 咪唑类离子液体在β沸石上的吸附[J]. 环境化学, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
引用本文: 赵瑰施, 张玲, 万玉秋, 许昭怡, 郑寿荣. 咪唑类离子液体在β沸石上的吸附[J]. 环境化学, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
ZHAO Guishi, ZHANG Ling, WAN Yuqiu, XU Zhaoyi, ZHENG Shourong. Adsorption of imidazolium ionic liquid onto β zeolites[J]. Environmental Chemistry, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
Citation: ZHAO Guishi, ZHANG Ling, WAN Yuqiu, XU Zhaoyi, ZHENG Shourong. Adsorption of imidazolium ionic liquid onto β zeolites[J]. Environmental Chemistry, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402

咪唑类离子液体在β沸石上的吸附

  • 基金项目:

    国家自然科学基金(21277066)和973项目(2014CB441103)资助.

Adsorption of imidazolium ionic liquid onto β zeolites

  • Fund Project: Supported by the National Natural Science Foundation of China (21277066)and National Basic Research Program of China(2014CB441103).
  • 摘要: 采用硅铝比(SiO2与Al2O3的物质的量之比)为31.66和190.73的两种β沸石分子筛,吸附氯化1,3-二甲基咪唑([DMIM]Cl)、氯化1-丁基-3-甲基咪唑([BMIM]Cl)及氯化1-辛基-3-甲基咪唑([OMIM]Cl)等3种不同分子量大小的咪唑类离子液体,研究不同硅铝比的β沸石对分子大小不同的离子液体的吸附差异.实验结果表明,β沸石对离子液体的吸附等温线符合Freundlich吸附模式,[DMIM]Cl、[BMIM]Cl和[OMIM]Cl在β1沸石上的吸附容量分别为0.62 mmol·g-1、0.67 mmol·g-1和0.73 mmol·g-1,在β2沸石上的吸附容量分别为0.23 mmol·g-1、0.38 mmol·g-1和0.55 mmol·g-1.β1沸石的吸附效果比β2沸石要好,且随着离子液体阳离子上烷基侧链碳原子数目增加,针对同一种吸附质,β1和β2沸石吸附容量之间的差异逐渐减小.吸附动力学显示[DMIM]Cl、[OMIM]Cl在β沸石上的吸附符合二级动力学,β1沸石吸附速率高于β2沸石,且吸附平衡所需时间更短.[DMIM]Cl和[OMIM]Cl在β1沸石上的吸附速率常数分别为0.0248 g·mg-1·min-1和0.0109 g·mg-1·min-1,在β2沸石上的吸附速率常数分别为0.0171 g·mg-1·min-1和0.0033 g·mg-1·min-1.β沸石对离子液体[BMIM]Cl及[OMIM]Cl的吸附容量比目前已报道文献中的活性炭的更高,是去除水体中离子液体的一种潜在优质吸附剂.
  • 加载中
  • [1] 纪开吉, 杨杰, 岳群峰. 介孔硅SBA-15对水溶液中咪唑基离子液体的吸附性能研究[J].化学工程师,2014, 28(11):72-75.

    JI K J, YANG J, YUE Q F. Adsorption of mesoporous silica SBA-15 for imidazole ionic liquids in aqueous solutions[J]. Chemical Engineer, 2014, 28(11):72-75(in Chinese).

    [2] BERNOT R J,KENNEDY E E,LAMBERTI G A. Effects of ionic liquids on the survival,movement,and feeding behavior of the freshwater snail, Physa acuta[J]. Environ Toxicol Chem, 2005, 24(7):1759-1765.
    [3] 曲玉萍, 陆颖舟, 李春喜. 5种吸附剂对水中离子液体的吸附性能[J]. 环境工程学报, 2012, 6(9):2969-2973.

    QU Y P, LU Y Z, LI C X. Adsorption of five adsorbents for different ionic liquids aqueous solutions[J]. Chinese Journal of Environmental Engineering, 2012, 6(9):2969-2973(in Chinese).

    [4] SIEDLECKA E M, GOLEBIOWSKI M, KACZYNSKI Z, et al. Degradation of ionic liquids by Fenton reaction:The effect of anions as counter and background ions[J]. Applied Catalysis B Environmental, 2009, 91(1/2):573-579.
    [5] SIEDLECKA E M, CZERWICKA M, STOLTE S, et al. Stability of Ionic Liquids in Application Conditions[J]. Current Organic Chemistry, 2011, 15(15):1974-1991.
    [6] PHAM T P T, CHUL-WOONG C, CHE-OK J, et al. Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms[J]. Environmental Science & Technology, 2009, 43(2):516-521.
    [7] LEMUS J, NEVES C M, MARQUES C F, et al. Composition and structural effects on the adsorption of ionic liquids onto activated carbon[J]. Environmental Sciences & Ecology. 2013, 15(9):1752-1759.
    [8] LI L, WANG Y, QI X. Adsorption of imidazolium-based ionic liquids with different chemical structures onto various resins from aqueous solutions[J]. Rsc Advances, 2015, 5(52):41352-41358.
    [9] PALOMAR J, LEMUS J, GILARRANZ M A, et al. Adsorption of ionic liquids from aqueous effluents by activated carbon[J]. Carbon, 2009, 47(7):1846-1856.
    [10] LEMUS J, PALOMAR J, HERAS F, et al. Developing criteria for the recovery of ionic liquids from aqueous phase by adsorption with activated carbon[J]. Separation & Purification Technology, 2012, 97(36):11-19.
    [11] QI X H, LI L Y, TAN T F, et al. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose[J]. Environmental Science & Technology, 2013, 47(6):2792-2798.
    [12] SUN B C, WON S W, YUN Y S. Use of ion-exchange resins for the adsorption of the cationic part of ionic liquid, 1-ethyl-3-methylimidazolium[J]. Chemical Engineering Journal, 2013, 214(1):78-82.
    [13] FANG G, CHEN J, WANG J, et al. N-methylimidazolium ionic liquid-functionalized silica as a sorbent for selective solid-phase extraction of 12 sulfonylurea herbicides in environmental water and soil samples.[J]. Journal of Chromatography A, 2010, 1217(10):1567-1574.
    [14] MROZIK W, JUNGNICKEL C, SKUP M, et al. Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite:Implications for their fate and transport in the soil environment[J]. Environmental Sciences & Ecology, 2008, 5(4):299-306.
    [15] REINERT L, BATOUCHE K, LEVEQUE J M, et al. Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite:Characterization and thermodynamic calculations[J]. Chemical Engineering Journal, 2013, 209(41):13-19.
    [16] 成官文, 吴志超, 章非娟, 等. 沸石在水污染控制中的研究与应用进展[J]. 环境科学与技术, 2006, 29(3):111-114.

    CHENG G W, WU Z C, ZHANG F J, et al. Progress in application of zeolite to wastewater treatment[J]. Environmental Science & Technology, 2006, 29(3):111-114(in Chinese).

    [17] CHANIE Y, DIAZ I, PEREZ E. Kinetics and mechanisms of adsorption/desorption of the ionic liquid 1-buthyl-3-methylimidazolium bromide into mordenite[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3):705-710.
    [18] BENSLAMA R, FRAISSARD J, ALBIZANE A, et al. An example of the technique of studying adsorbed xenon by 129Xe n.m.r.:Approximate determination of the internal void space of zeolite beta[J]. Zeolites, 1988, 8(3):196-198.
    [19] 祁晓岚.十二元环沸石合成、表征及催化性能研究[D].北京:石油化工科学研究院学位论文, 2001. QI X L. Synthesis, Characterization and catalytic property of zeolites with 12-membered ring[D]. Beijing:Research Institute of Petroleum Processing, 2001(in Chinese).
    [20] SCHERZER J. Catalytic materials:Relation between structure and reactivity[C]. ACS Symp Ser 248. Am Chem Soc, Washington D C, 1984:57.
    [21] TREACY M J, PRINCETON N J. Collection of simulated XRD powder patterns for zeolites[J]. Applied Catalysis,1986,21(2):388-389.
    [22] 祁晓岚, 王战, 李士杰, 等. 无胺法合成高硅丝光沸石的表征[J]. 物理化学学报, 2006, 22(2):198-202.

    QI X L, WANG Z, LI S J, et al. Characterization of high silica mordenite synthesized from amine-free system using fluoride as structure-directing agent[J]. Acta Physico-Chimica Sinica, 2006, 22(2):198-202(in Chinese).

    [23] 赵培侠, 刘靖. 改性Hβ沸石的物化性能表征[J]. 河南化工, 2008, 25(1):21-24.

    ZHAO P X, LIU J. Study on physical chemistry properties of modified Naβ zeolite[J]. Henan Chemical Industry, 2008, 25(1):21-24(in Chinese).

    [24] 李强, 窦涛, 霍全, 等. 不同硅铝比β沸石的理化性质及烃类催化裂化活性[J]. 物理化学学报, 2008, 24(7):1192-1198.

    LI Q, DOU T, HUO Q, et al. Physicochemical properties and activities of hydrocarbon catalytic cracking of β-zeolite with different silica-alumina ratios[J]. Acta Physico-Chimica Sinica, 2008, 24(7):1192-1198(in Chinese).

    [25] QI X H, LI L Y, WANG Y, et al. Removal of hydrophilic ionic liquids from aqueous solutions by adsorption onto high surface area oxygenated carbonaceous material[J]. Chemical Engineering Journal, 2014, 256(6):407-414.
    [26] FAROOQ A, REINETR L, LEVEQUE J M, et al. Adsorption of ionic liquids onto activated carbons:Effect of pH and temperature[J]. Microporous & Mesoporous Materials, 2012, 158(158):55-63.
  • 加载中
计量
  • 文章访问数:  1798
  • HTML全文浏览数:  1614
  • PDF下载数:  344
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-04
  • 刊出日期:  2016-08-15
赵瑰施, 张玲, 万玉秋, 许昭怡, 郑寿荣. 咪唑类离子液体在β沸石上的吸附[J]. 环境化学, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
引用本文: 赵瑰施, 张玲, 万玉秋, 许昭怡, 郑寿荣. 咪唑类离子液体在β沸石上的吸附[J]. 环境化学, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
ZHAO Guishi, ZHANG Ling, WAN Yuqiu, XU Zhaoyi, ZHENG Shourong. Adsorption of imidazolium ionic liquid onto β zeolites[J]. Environmental Chemistry, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
Citation: ZHAO Guishi, ZHANG Ling, WAN Yuqiu, XU Zhaoyi, ZHENG Shourong. Adsorption of imidazolium ionic liquid onto β zeolites[J]. Environmental Chemistry, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402

咪唑类离子液体在β沸石上的吸附

  • 1. 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京, 210046
基金项目:

国家自然科学基金(21277066)和973项目(2014CB441103)资助.

摘要: 采用硅铝比(SiO2与Al2O3的物质的量之比)为31.66和190.73的两种β沸石分子筛,吸附氯化1,3-二甲基咪唑([DMIM]Cl)、氯化1-丁基-3-甲基咪唑([BMIM]Cl)及氯化1-辛基-3-甲基咪唑([OMIM]Cl)等3种不同分子量大小的咪唑类离子液体,研究不同硅铝比的β沸石对分子大小不同的离子液体的吸附差异.实验结果表明,β沸石对离子液体的吸附等温线符合Freundlich吸附模式,[DMIM]Cl、[BMIM]Cl和[OMIM]Cl在β1沸石上的吸附容量分别为0.62 mmol·g-1、0.67 mmol·g-1和0.73 mmol·g-1,在β2沸石上的吸附容量分别为0.23 mmol·g-1、0.38 mmol·g-1和0.55 mmol·g-1.β1沸石的吸附效果比β2沸石要好,且随着离子液体阳离子上烷基侧链碳原子数目增加,针对同一种吸附质,β1和β2沸石吸附容量之间的差异逐渐减小.吸附动力学显示[DMIM]Cl、[OMIM]Cl在β沸石上的吸附符合二级动力学,β1沸石吸附速率高于β2沸石,且吸附平衡所需时间更短.[DMIM]Cl和[OMIM]Cl在β1沸石上的吸附速率常数分别为0.0248 g·mg-1·min-1和0.0109 g·mg-1·min-1,在β2沸石上的吸附速率常数分别为0.0171 g·mg-1·min-1和0.0033 g·mg-1·min-1.β沸石对离子液体[BMIM]Cl及[OMIM]Cl的吸附容量比目前已报道文献中的活性炭的更高,是去除水体中离子液体的一种潜在优质吸附剂.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回