咪唑类离子液体在β沸石上的吸附
Adsorption of imidazolium ionic liquid onto β zeolites
-
摘要: 采用硅铝比(SiO2与Al2O3的物质的量之比)为31.66和190.73的两种β沸石分子筛,吸附氯化1,3-二甲基咪唑([DMIM]Cl)、氯化1-丁基-3-甲基咪唑([BMIM]Cl)及氯化1-辛基-3-甲基咪唑([OMIM]Cl)等3种不同分子量大小的咪唑类离子液体,研究不同硅铝比的β沸石对分子大小不同的离子液体的吸附差异.实验结果表明,β沸石对离子液体的吸附等温线符合Freundlich吸附模式,[DMIM]Cl、[BMIM]Cl和[OMIM]Cl在β1沸石上的吸附容量分别为0.62 mmol·g-1、0.67 mmol·g-1和0.73 mmol·g-1,在β2沸石上的吸附容量分别为0.23 mmol·g-1、0.38 mmol·g-1和0.55 mmol·g-1.β1沸石的吸附效果比β2沸石要好,且随着离子液体阳离子上烷基侧链碳原子数目增加,针对同一种吸附质,β1和β2沸石吸附容量之间的差异逐渐减小.吸附动力学显示[DMIM]Cl、[OMIM]Cl在β沸石上的吸附符合二级动力学,β1沸石吸附速率高于β2沸石,且吸附平衡所需时间更短.[DMIM]Cl和[OMIM]Cl在β1沸石上的吸附速率常数分别为0.0248 g·mg-1·min-1和0.0109 g·mg-1·min-1,在β2沸石上的吸附速率常数分别为0.0171 g·mg-1·min-1和0.0033 g·mg-1·min-1.β沸石对离子液体[BMIM]Cl及[OMIM]Cl的吸附容量比目前已报道文献中的活性炭的更高,是去除水体中离子液体的一种潜在优质吸附剂.Abstract: In this work, we used two β zeolites with Si/Al ratios (mole ratio of SiO2 to Al2O3) of 31.66 and 190.73 to adsorb three imidazolium-based ionic liquids, including 1,3-Dimethyllmidazolium Chloride ([DMIM]Cl), 1-butyl-3-methyl-imidazolium chloride ([BMIM]Cl) and 1-octyl-3-methylimidazolium chloride ([OMIM]Cl), to investigate the adsorption mechanism of ionic liquid onto β zeolites. The results showed that the adsorption isotherms of ionic liquid on β zeolites were well described with the Freundlich model. The adsorption capacity of[DMIM]Cl,[BMIM]Cl and[OMIM]Cl on β1 zeolite was 0.62 mmol·g-1, 0.67 mmol·g-1 and 0.73 mmol·g-1, respectively, while the adsorption capacity on β2 zeolite was 0.23 mmol·g-1,0.38 mmol·g-1 and 0.55 mmol·g-1, respectively. The β1 zeolite was proved to have higher adsorption capacity than β2 zeolite, and the difference in the adsorption capacity between β1 and β2 zeolites decreased with the number of the carbon atoms of the substituted alkyl chains. The adsorption process of ionic liquid over β zeolites could be well described using the pseudo-second-order kinetics, and β1 zeolite had a shorter adsorption equilibrium time than β2 zeolite. The adsorption rate constants of[DMIM]Cl and[OMIM]Cl onto β1 zeolite were 0.0248 g·mg-1·min-1 and 0.0109 g·mg-1·min-1, respectively, and were 0.017 g·mg-1·min-1 and 0.0033 g·mg-1·min-1 onto β2 zeolite, respectively. The adsorption capacities of[BMIM]Cl and[OMIM]Cl on β zeolite are much higher than those reported on activated carbon, highlighting the potential of zeolite as promising adsorbents for the removal of ionic liquids in water.
-
Key words:
- β zeolites /
- ionic liquids /
- adsorption
-
-
[1] 纪开吉, 杨杰, 岳群峰. 介孔硅SBA-15对水溶液中咪唑基离子液体的吸附性能研究[J].化学工程师,2014, 28(11):72-75. JI K J, YANG J, YUE Q F. Adsorption of mesoporous silica SBA-15 for imidazole ionic liquids in aqueous solutions[J]. Chemical Engineer, 2014, 28(11):72-75(in Chinese).
[2] BERNOT R J,KENNEDY E E,LAMBERTI G A. Effects of ionic liquids on the survival,movement,and feeding behavior of the freshwater snail, Physa acuta[J]. Environ Toxicol Chem, 2005, 24(7):1759-1765. [3] 曲玉萍, 陆颖舟, 李春喜. 5种吸附剂对水中离子液体的吸附性能[J]. 环境工程学报, 2012, 6(9):2969-2973. QU Y P, LU Y Z, LI C X. Adsorption of five adsorbents for different ionic liquids aqueous solutions[J]. Chinese Journal of Environmental Engineering, 2012, 6(9):2969-2973(in Chinese).
[4] SIEDLECKA E M, GOLEBIOWSKI M, KACZYNSKI Z, et al. Degradation of ionic liquids by Fenton reaction:The effect of anions as counter and background ions[J]. Applied Catalysis B Environmental, 2009, 91(1/2):573-579. [5] SIEDLECKA E M, CZERWICKA M, STOLTE S, et al. Stability of Ionic Liquids in Application Conditions[J]. Current Organic Chemistry, 2011, 15(15):1974-1991. [6] PHAM T P T, CHUL-WOONG C, CHE-OK J, et al. Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms[J]. Environmental Science & Technology, 2009, 43(2):516-521. [7] LEMUS J, NEVES C M, MARQUES C F, et al. Composition and structural effects on the adsorption of ionic liquids onto activated carbon[J]. Environmental Sciences & Ecology. 2013, 15(9):1752-1759. [8] LI L, WANG Y, QI X. Adsorption of imidazolium-based ionic liquids with different chemical structures onto various resins from aqueous solutions[J]. Rsc Advances, 2015, 5(52):41352-41358. [9] PALOMAR J, LEMUS J, GILARRANZ M A, et al. Adsorption of ionic liquids from aqueous effluents by activated carbon[J]. Carbon, 2009, 47(7):1846-1856. [10] LEMUS J, PALOMAR J, HERAS F, et al. Developing criteria for the recovery of ionic liquids from aqueous phase by adsorption with activated carbon[J]. Separation & Purification Technology, 2012, 97(36):11-19. [11] QI X H, LI L Y, TAN T F, et al. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose[J]. Environmental Science & Technology, 2013, 47(6):2792-2798. [12] SUN B C, WON S W, YUN Y S. Use of ion-exchange resins for the adsorption of the cationic part of ionic liquid, 1-ethyl-3-methylimidazolium[J]. Chemical Engineering Journal, 2013, 214(1):78-82. [13] FANG G, CHEN J, WANG J, et al. N-methylimidazolium ionic liquid-functionalized silica as a sorbent for selective solid-phase extraction of 12 sulfonylurea herbicides in environmental water and soil samples.[J]. Journal of Chromatography A, 2010, 1217(10):1567-1574. [14] MROZIK W, JUNGNICKEL C, SKUP M, et al. Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite:Implications for their fate and transport in the soil environment[J]. Environmental Sciences & Ecology, 2008, 5(4):299-306. [15] REINERT L, BATOUCHE K, LEVEQUE J M, et al. Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite:Characterization and thermodynamic calculations[J]. Chemical Engineering Journal, 2013, 209(41):13-19. [16] 成官文, 吴志超, 章非娟, 等. 沸石在水污染控制中的研究与应用进展[J]. 环境科学与技术, 2006, 29(3):111-114. CHENG G W, WU Z C, ZHANG F J, et al. Progress in application of zeolite to wastewater treatment[J]. Environmental Science & Technology, 2006, 29(3):111-114(in Chinese).
[17] CHANIE Y, DIAZ I, PEREZ E. Kinetics and mechanisms of adsorption/desorption of the ionic liquid 1-buthyl-3-methylimidazolium bromide into mordenite[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3):705-710. [18] BENSLAMA R, FRAISSARD J, ALBIZANE A, et al. An example of the technique of studying adsorbed xenon by 129Xe n.m.r.:Approximate determination of the internal void space of zeolite beta[J]. Zeolites, 1988, 8(3):196-198. [19] 祁晓岚.十二元环沸石合成、表征及催化性能研究[D].北京:石油化工科学研究院学位论文, 2001. QI X L. Synthesis, Characterization and catalytic property of zeolites with 12-membered ring[D]. Beijing:Research Institute of Petroleum Processing, 2001(in Chinese). [20] SCHERZER J. Catalytic materials:Relation between structure and reactivity[C]. ACS Symp Ser 248. Am Chem Soc, Washington D C, 1984:57. [21] TREACY M J, PRINCETON N J. Collection of simulated XRD powder patterns for zeolites[J]. Applied Catalysis,1986,21(2):388-389. [22] 祁晓岚, 王战, 李士杰, 等. 无胺法合成高硅丝光沸石的表征[J]. 物理化学学报, 2006, 22(2):198-202. QI X L, WANG Z, LI S J, et al. Characterization of high silica mordenite synthesized from amine-free system using fluoride as structure-directing agent[J]. Acta Physico-Chimica Sinica, 2006, 22(2):198-202(in Chinese).
[23] 赵培侠, 刘靖. 改性Hβ沸石的物化性能表征[J]. 河南化工, 2008, 25(1):21-24. ZHAO P X, LIU J. Study on physical chemistry properties of modified Naβ zeolite[J]. Henan Chemical Industry, 2008, 25(1):21-24(in Chinese).
[24] 李强, 窦涛, 霍全, 等. 不同硅铝比β沸石的理化性质及烃类催化裂化活性[J]. 物理化学学报, 2008, 24(7):1192-1198. LI Q, DOU T, HUO Q, et al. Physicochemical properties and activities of hydrocarbon catalytic cracking of β-zeolite with different silica-alumina ratios[J]. Acta Physico-Chimica Sinica, 2008, 24(7):1192-1198(in Chinese).
[25] QI X H, LI L Y, WANG Y, et al. Removal of hydrophilic ionic liquids from aqueous solutions by adsorption onto high surface area oxygenated carbonaceous material[J]. Chemical Engineering Journal, 2014, 256(6):407-414. [26] FAROOQ A, REINETR L, LEVEQUE J M, et al. Adsorption of ionic liquids onto activated carbons:Effect of pH and temperature[J]. Microporous & Mesoporous Materials, 2012, 158(158):55-63. -

计量
- 文章访问数: 1798
- HTML全文浏览数: 1614
- PDF下载数: 344
- 施引文献: 0