生物质电厂底渣对水溶液中Cu2+的吸附特性

徐磊, 郑学博, 崔红标, 梁家妮, 陶志慧, 祝振球, 刘冰冰, 周静. 生物质电厂底渣对水溶液中Cu2+的吸附特性[J]. 环境化学, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101
引用本文: 徐磊, 郑学博, 崔红标, 梁家妮, 陶志慧, 祝振球, 刘冰冰, 周静. 生物质电厂底渣对水溶液中Cu2+的吸附特性[J]. 环境化学, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101
XU Lei, ZHENG Xuebo, CUI Hongbiao, LIANG Jiani, TAO Zhihui, ZHU Zhenqiu, LIU Bingbing, ZHOU Jing. Adsorption of Cu2+ in water by biomass ash[J]. Environmental Chemistry, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101
Citation: XU Lei, ZHENG Xuebo, CUI Hongbiao, LIANG Jiani, TAO Zhihui, ZHU Zhenqiu, LIU Bingbing, ZHOU Jing. Adsorption of Cu2+ in water by biomass ash[J]. Environmental Chemistry, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101

生物质电厂底渣对水溶液中Cu2+的吸附特性

  • 基金项目:

    国家“973”课题(2013CB934302),江西贵溪镉铜污染土壤修复技术示范(KFJ-EW-STS-016),赣鄱英才555工程,国家科技支撑计划课题(2015BAD05B01),国家自然科学基金重点项目(U1033004)资助.

Adsorption of Cu2+ in water by biomass ash

  • Fund Project: Supported by the National Basic Research Program of China(2013CB934302), Demonstration of Remediation Technology of Cadmium and Copper Contaminated Soil in Guixi, Jiangxi(KFJ-EW-STS-016),Jiangxi Province Talent Project 555,National Science and Technology Support Plan(2015BAD05B01),National Natural Science Foundation of China(U1033004).
  • 摘要: 本实验选用安徽某生物质发电厂燃烧炉底渣,通过研究吸附等温线、吸附时间以及电厂灰投加量和溶液初始pH对生物质灰吸附Cu2+的影响,以确定其对水溶液中Cu2+的吸附特性.结果表明,Cu2+初始浓度在50-100 mg·L-1范围内,Langmuir模型能很好地描述生物质电厂底渣对Cu2+的等温吸附规律,其理论饱和吸附量为20 mg·g-1,非常接近实际饱和吸附量19.45 mg·g-1.溶液初始pH值在2-6范围时,Cu2+的去除率随pH值的升高而增加,当pH在6附近时去除率最佳,接近100%.溶液Cu2+初始浓度为100 mg·L-1,体积为50 mL时,随生物质电厂底渣投加量增加,其对Cu2+的去除率上升,但去除效率下降,0.2 g左右可能是达到最佳去除效率和去除率的用量.溶液中Cu2+的去除率随吸附时间的增加而升高,用量越大达到吸附平衡的时间越短,但90 min左右时各个用量的去除率均趋于稳定.
  • 加载中
  • [1] SNEZANA M S, ANA A L, JELENA V K, et al. Assessment of air pollution originating from copper smelter in Bor (Serbia)[J]. Environmental Earth Sciences, 2014:71:1651-1661.
    [2] 岳霞,刘魁,林夏露,等.中国七大主要水系重金属污染现况[J].预防医学论坛,2014,20(3):209-213.

    YUE X, LIU K, LIN X L, et al. Status of heavy metal pollution in seven major river systems in China[J]. Preventive Medicine Tribune,2014,20(3):209-213(in Chinese).

    [3] 李博,刘述平.含铜废水的处理技术及研究进展[J].矿产综合利用,2008,10(5):33-37.

    LI B, LIU S P. The technologies for treating waste water containing copper and research progress[J]. Multipurpose Utilization of Mineral Resources, 2008,10(5):33-37(in Chinese).

    [4] 黄君涛,熊帆,谢伟立,等.吸附法处理重金属废水研究进展[J].水处理技术,2006,32(2):9-12.

    HUANG J T, XIONG F, XIE W L, et al. Progress in researches on treatment of heavy metal waste water by adsorption process[J]. Technology of Water Treatment, 2006,32(2):9-12(in Chinese).

    [5] TARELHOL A C, TEIXEIRA E R, SILVA D F R, et al. Characteristics of distinct ash flows in a biomass thermal power plant with bubbling fluidised bed combustor[J]. Energy,2015,90:387-402.
    [6] 舒颖,吴彩斌,胡雪峰,等. 粉煤灰活性炭处理含铜废水的性能[J].环境化学,2013,32(5):819-826.

    SHU Y, WU C B, HU X F, et al. Treatment Cu-containing wastewater by using activated carbon made from coal ash[J]. Environmental Chemistry, 2013,32(5):819-826(in Chinese).

    [7] 贾艳萍姜成张羽汐,等.粉煤灰的特性及其去除水中重金属的研究进展[J].硅酸盐通报,2015,34(7):1896-1902.

    JIA Y P, JIANG C, ZHANG Y X, et al. Characteristics of fly ash and its study progress in removing heavy metals in wastewater[J]. Bulletin of the Chinese Ceramic Society, 2015,34(7):1896-1902(in Chinese).

    [8] PIZARRO J M, CASTILLO X M N, JARA S B T, et al. Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica[J].Fuel,2015,156(15):96-102.
    [9] BOURLIVA A.N, MICHAILIDIS K P, SIKALIDIS C S T, et al. Adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ) and Pb(Ⅱ) onto natural bentonite:Study in mono- and multi-metal systems[J]. Environmental Earth Sciences,2015,73(9):5435-5444.
    [10] HO Y S, PORTER J F, MCKAY G. Equilibrium isotherm studies forthe sorption of divalent metal ions onto peat:Copper, nickel and lead single component systems[J]. Water Air and Soil Pollution,2002,141:1-33.
    [11] NETHAJI S, SIVASAMY A, MANDAL A B.Adsorption isotherms,kinetics and mechanism for the adsorption of cationic andanionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass[J]. International Journal of Environmental Science and Technology,2013,10:231-242.
    [12] 张再利,况群,贾晓珊. 花生壳吸附Pb2+、Cu2+、Cr3+、Cd2+、Ni2+的动力学和热力学研究[J]. 生态环境学报,2010, 19(12):2973-2977.

    ZHANG Z L, KUANG Q, JIA X S. Study on the kinetics and thermodynamics of Pb2+, Cu2+, Cr3+, Cd2+, Ni2+ adsorption onto peanut hull[J]. Ecology and Environmental Sciences, 2010,19(12):2973-2977(in Chinese).

    [13] 甄豪波,胡勇有,程建华. 壳聚糖交联沸石小球对Cu2+、Ni2+及Cd2+的吸附特性[J]. 环境科学学报,2011,31(7):1369-1376.

    ZHEN H B, HU Y Y, CHENG J H. Adsorption of Cu2+,Ni2+ and Cd2+ by chitosan cross-linked zeolite beads[J]. Acta Scientiae Circumstantiae, 2011,31(7):1369-1376(in Chinese).

    [14] ANNADRUAL G, RUEY S J, LEE D J. Adsorption of heavy metals from water using banana and orange peels[J].Water Science and Technology,2003,47(1):185-190.
    [15] MURAT K L, CISEM K B Y. Adsorption of heavy metal ions from aqueous solutions by bio-char,a by-product of pyrolysis[J].Applied Surface Science,2013,283:856-862.
    [16] AHMET S R, MUSTAFA T Z, DEMIRHAN C T, et al. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(Ⅱ) from aqueous solution onto Turkish kaolinite clay[J]. Journal of Hazardous Materials,2007,149(2):283-291.
    [17] SUSMITA S G, BHATTACHARYYA K G. Immobilization of Pb(Ⅱ), CdⅡ) and Ni(Ⅱ) ions on kaolinite and montmorillonite surfaces from aqueous medium[J]. Journal of Environmental Management,2008,87(1):46-58.
    [18] CETIN S, PEHLIVAN E. The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,298:83-87.
    [19] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学,2011,30(8):1411-1421.

    LI L, LIU Y, LU Y C, et al. Review on environmental effects and applications of biochar[J]. Environmental Chemistry, 2011,30(8):1411-1421(in Chinese).

    [20] ARGUN M E, DURSUN S K, OZDEMIR C, et al. Heavy metal adsorption by modified oak sawdust:Thermodynamics and kinetics[J]. Journal of Hazardous Materials,2007,141(1):77-85.
  • 加载中
计量
  • 文章访问数:  1816
  • HTML全文浏览数:  1730
  • PDF下载数:  519
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-11
  • 刊出日期:  2016-08-15
徐磊, 郑学博, 崔红标, 梁家妮, 陶志慧, 祝振球, 刘冰冰, 周静. 生物质电厂底渣对水溶液中Cu2+的吸附特性[J]. 环境化学, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101
引用本文: 徐磊, 郑学博, 崔红标, 梁家妮, 陶志慧, 祝振球, 刘冰冰, 周静. 生物质电厂底渣对水溶液中Cu2+的吸附特性[J]. 环境化学, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101
XU Lei, ZHENG Xuebo, CUI Hongbiao, LIANG Jiani, TAO Zhihui, ZHU Zhenqiu, LIU Bingbing, ZHOU Jing. Adsorption of Cu2+ in water by biomass ash[J]. Environmental Chemistry, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101
Citation: XU Lei, ZHENG Xuebo, CUI Hongbiao, LIANG Jiani, TAO Zhihui, ZHU Zhenqiu, LIU Bingbing, ZHOU Jing. Adsorption of Cu2+ in water by biomass ash[J]. Environmental Chemistry, 2016, 35(8): 1642-1648. doi: 10.7524/j.issn.0254-6108.2016.08.2015121101

生物质电厂底渣对水溶液中Cu2+的吸附特性

  • 1.  中国科学院南京土壤研究所, 南京, 210008;
  • 2.  中国科学院土壤环境与污染修复重点实验室, 南京, 210008;
  • 3.  中国科学院大学, 北京, 100049;
  • 4.  江西省重金属污染生态修复工程技术研究中心, 南昌, 330096;
  • 5.  国家红壤改良工程技术研究中心, 中国科学院红壤生态实验站, 鹰潭, 335211;
  • 6.  安徽理工大学地球与环境学院, 淮南, 232001
基金项目:

国家“973”课题(2013CB934302),江西贵溪镉铜污染土壤修复技术示范(KFJ-EW-STS-016),赣鄱英才555工程,国家科技支撑计划课题(2015BAD05B01),国家自然科学基金重点项目(U1033004)资助.

摘要: 本实验选用安徽某生物质发电厂燃烧炉底渣,通过研究吸附等温线、吸附时间以及电厂灰投加量和溶液初始pH对生物质灰吸附Cu2+的影响,以确定其对水溶液中Cu2+的吸附特性.结果表明,Cu2+初始浓度在50-100 mg·L-1范围内,Langmuir模型能很好地描述生物质电厂底渣对Cu2+的等温吸附规律,其理论饱和吸附量为20 mg·g-1,非常接近实际饱和吸附量19.45 mg·g-1.溶液初始pH值在2-6范围时,Cu2+的去除率随pH值的升高而增加,当pH在6附近时去除率最佳,接近100%.溶液Cu2+初始浓度为100 mg·L-1,体积为50 mL时,随生物质电厂底渣投加量增加,其对Cu2+的去除率上升,但去除效率下降,0.2 g左右可能是达到最佳去除效率和去除率的用量.溶液中Cu2+的去除率随吸附时间的增加而升高,用量越大达到吸附平衡的时间越短,但90 min左右时各个用量的去除率均趋于稳定.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回