改良剂对土壤As钝化作用及生物可给性的影响

向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
引用本文: 向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
Citation: XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803

改良剂对土壤As钝化作用及生物可给性的影响

  • 基金项目:

    国家科技支撑计划项目(2015BAD05B02)和中央级公益性科研院所基本科研业务费专项资金(农业部环境保护科研监测所)项目资助.

Influence of amendments on inactivation and bio-accessibility of arsenic in soils

  • Fund Project: Supported by the National Science and Technology Support Program(2015BAD05B02), and Central Public Research Institutes Basic Funds for Research and Development(Agro-Environmental Protection Institute, Ministry of Agriculture).
  • 摘要: 采用室内土壤培养法研究不同改良剂(硫酸亚铁、骨炭、生物调理剂、磷酸二氢钙和堆肥)对土壤As化学形态转化和生物可给性的影响.结果表明,除堆肥和磷酸二氢钙处理外,其他3种改良剂均显著地提高土壤的pH值.BCR分级提取表明,土壤As主要以残渣态形式存在.添加磷酸二氢钙显著地提高了土壤As的移动性,而添加硫酸亚铁、骨炭、生物调理剂和堆肥却显著地降低了土壤As的移动性.培养1个月后,添加硫酸亚铁、骨炭和生物调理剂导致土壤酸可提取态As含量分别比对照处理降低86.65%、76.88%和34.19%.添加不同的改良剂对土壤As的生物可给性也有影响,除磷酸二氢钙处理外,硫酸亚铁、骨炭、生物调理剂和堆肥均显著性地降低了土壤As的生物可给性,其中硫酸亚铁处理对As的固定效果最好.培养2个月后,添加硫酸亚铁处理导致土壤As的生物可给性含量分别比对照降低90.76%,而添加磷酸二氢钙处理导致土壤As的生物可给性含量分别比对照提高1.81倍.硫酸亚铁、骨炭和生物调理剂可作为钝化As污染土壤的潜力材料.
  • [1] 赵其国. 发展与创新创新现代土壤科学[J]. 土壤学报, 2003, 40(3):321-327.

    ZHAO Q G. Development and innovation of modern science[J]. Acta Pedolagica Sinica, 2003, 40(3):321-327(in Chinese).

    [2] SMITH E, NAIDU R, ALSTON A M. Arsenic in the soil environment:A review[J]. Advance in Agronomy, 1998, 64:149-195.
    [3] 孟紫强主编. 环境毒理学[M]. 北京:中国环境科学出版社, 2000, 146-157. MENG Z Q. Environmental toxicology[M]. Beijing:China Environmental Science Press, 2000, 146

    -157(in Chinese).

    [4] 黄益宗, 郝晓伟. 赤泥、骨炭和石灰对玉米吸收积累As、Pb和Zn的影响[J].农业环境科学学报, 2013, 32(3):456-462.

    HUANG Y Z, HAO X W. Effect of red mud, bone char and lime on uptake and accumulate of As, Pb and Zn by maize(Zea mays) planted in contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):456-462(in Chinese).

    [5] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendmentsA review[J]. Waste Management, 2008, 28(1):215-225.
    [6] ZHOU Y F, HAYNES R J. Sorption of heavy metals by inorganic and organic components of solid wastes:Significance to use of wastes as low-cost adsorbents and immobilizing agents[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(11):909-977.
    [7] 孙晓铧, 黄益宗, 伍文, 等. 改良剂对土壤Pb、Zn赋存形态的影响[J]. 环境化学, 2013, 32(5):881-885.

    SUN X H, HUANG Y Z, WU W, et al. Effect of several amendments on fractionation of Pb、Zn in contaminated soil[J]. Environmental Chemistry, 2013, 32(5):881-885(in Chinese).

    [8] 高卫国, 黄益宗, 雷鸣. 添加堆肥和赤泥对土壤生物有效性Cd、Zn的影响[J]. 环境工程学报, 2008, 2(1):78-82.

    GAO W G, HUANG Y Z, LEI M. Effects of compost and red mud addition on bioavaibility of Cd and Zn in soil[J]. Chinese Journal of Environmental Engineering, 2008, 2(1):78-82(in Chinese).

    [9] HUANG Y Z, HAO X W. Effect of red mud addition on the fractionation and bio-accessibility of Pb, Zn and As in combined contaminated soil[J]. Chemistry and Ecology, 2012, 28(1):37-48.
    [10] MIRETZKY P, CIRELLI A F. Remediation of arsenic-contaminated soils by iron amendments:a review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40:93-115.
    [11] 鲁如坤主编. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. LU R K. Soil chemical analysis[M]. Beijing:China Agricultural Science and Technology Press, 2000(in Chinese).
    [12] RAURET G, LóPEZ-SáNCHEZ J F. Application of a modified BCR sequential extraction(three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material(CRM483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content[J]. Journal of Environmental Monitoring, 2000, 2(3):228-233.
    [13] KIM J W, KIM K W, LEE J U, et al. Assessment of As and Heavy metal cotamination in the vicinity of duckum Au-Ag mine, Korea[J]. Environ Geochem Health, 2002, 24(3):215-227.
    [14] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4):539-543.

    DU C Y, ZU Y Q, LI Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4):539-543(in Chinese).

    [15] GARAU G, CASTALDI P, SANTONA L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma, 2007, 142(1/2):47-57.
    [16] 孙晓铧, 黄益宗, 肖可青, 等. 磷矿粉、骨炭和油菜秸秆对重金属复合污染土壤细菌和古菌数量的影响[J]. 农业环境科学学报, 2013, 32(3):565-571.

    SUN X H, HUANG Y Z, XIAO K Q, et al. Effects of phosphate rock, bone char and rape straw on quantity of bacteria and archaea in soils combined pollution by heavy metals[J]. Journal of Agro-Environment Science, 2013, 32(3):565-571(in Chinese).

    [17] 赵慧敏. 铁盐、生石灰对砷污染土壤固定、稳定化处理技术研究[D]. 北京:中国地质大学(北京)硕士学位论文, 2010. ZHAO H M. Study on solidification/stabilization technology of arsenic contaminated soils using molysite and quicklime[D]. Beijing:China University of Geosciences, 2010(in Chinese).
    [18] ZHAO H S, STANFORTH R. Competitive adsorption of phosphate and arsenate on goethite[J]. Environmental Science and technology, 2001, 35(24):4753-4757.
    [19] LOU L, ZHANG S Z, SHAN X Q, et al. Arsenate sorption on two Chinese red soils evaluated using macroscopic measurements and EXAFS spectroscopy[J]. Environmental Toxicology and Chemistry, 2006, 25(12):3118-3124.
    [20] 韦璐阳. 钙、镁、铁对土壤砷污染的治理研究[D]. 南宁:广西大学硕士学位论文, 2005. WEI L Y. Study on prevention and control of arsenic toxicity by Ca, Mg and Fe[D]. Nanning:Guangxi University, 2005(in Chinese).
    [21] Jackson B P, Miller W P. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species forms iron oxides[J]. Soil Science Society of America Journal, 2000, 64(5):1616-1622.
    [22] Bolan N, Mahimairaja S, Kunhikrishnan A, et al. Sorption-bioavailability nexus of arsenic and cadmium in variable charge soils[J]. Journal of Hazardous Materials, 2013, 261:725-732.
    [23] 郝晓伟, 黄益宗, 崔岩山, 等. 赤泥和骨炭对酸性土壤As化学形态及其生物可给性的影响[J]. 环境化学, 2010, 29(3):383-387.

    HAO X W, HUANG Y Z, CUI Y S, et al. Effevts of red mud and bone char addition in fraction and bio-accessibility of arsenic in contaminated soil[J]. Environmental Chemistry, 2010, 29(3):383-387(in Chinese).

  • 期刊类型引用(6)

    1. 蒋毅,刘雅,辜娇峰,杨世童,曾雄,王轩宁,周航,廖柏寒. 三元复合调理剂对土壤镉砷赋存形态和糙米镉砷累积的调控效应. 环境科学. 2021(01): 378-385 . 百度学术
    2. 周春海,张振强,黄志红,肖选虎,杨雍康,祖艳群,李元. 不同钝化剂对酸性土壤中重金属的钝化修复研究进展. 中国农学通报. 2020(33): 71-79 . 百度学术
    3. 陶祥运,李磊明,刘小红,司友斌. 白云石和硫酸亚铁复配对城市污泥中重金属形态分布及生物有效性的影响. 环境工程学报. 2018(02): 654-662 . 百度学术
    4. 田桃,雷鸣,周航,杨文弢,廖柏寒,胡立琼,曾敏. 两种钝化剂对土壤Pb、Cd、As复合污染的菜地修复效果. 环境科学. 2017(06): 2553-2560 . 百度学术
    5. 王俊,王青清,魏世强. 腐植酸对土壤砷化学形态及生物可给性的影响. 农业环境科学学报. 2017(06): 1124-1132 . 百度学术
    6. 胡红青,黄益宗,黄巧云,刘永红,胡超. 农田土壤重金属污染化学钝化修复研究进展. 植物营养与肥料学报. 2017(06): 1676-1685 . 百度学术

    其他类型引用(19)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.8 %DOWNLOAD: 4.8 %FULLTEXT: 93.1 %FULLTEXT: 93.1 %META: 2.1 %META: 2.1 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 83.7 %其他: 83.7 %Ashburn: 3.6 %Ashburn: 3.6 %Beijing: 6.6 %Beijing: 6.6 %Chengdu: 0.3 %Chengdu: 0.3 %Dongtundu: 0.3 %Dongtundu: 0.3 %Jinrongjie: 0.3 %Jinrongjie: 0.3 %Nanjing: 0.3 %Nanjing: 0.3 %Newark: 1.5 %Newark: 1.5 %Shijiazhuang: 0.6 %Shijiazhuang: 0.6 %The Bronx: 0.3 %The Bronx: 0.3 %Xingfeng: 0.6 %Xingfeng: 0.6 %XX: 1.5 %XX: 1.5 %金华: 0.3 %金华: 0.3 %其他AshburnBeijingChengduDongtunduJinrongjieNanjingNewarkShijiazhuangThe BronxXingfengXX金华Highcharts.com
计量
  • 文章访问数:  1708
  • HTML全文浏览数:  1645
  • PDF下载数:  556
  • 施引文献:  25
出版历程
  • 收稿日期:  2015-09-28
  • 刊出日期:  2016-02-15
向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
引用本文: 向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
Citation: XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803

改良剂对土壤As钝化作用及生物可给性的影响

  • 1.  农业部环境保护科研监测所, 天津, 300191;
  • 2.  甘肃农业大学资源与环境学院, 兰州, 730070;
  • 3.  中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家科技支撑计划项目(2015BAD05B02)和中央级公益性科研院所基本科研业务费专项资金(农业部环境保护科研监测所)项目资助.

摘要: 采用室内土壤培养法研究不同改良剂(硫酸亚铁、骨炭、生物调理剂、磷酸二氢钙和堆肥)对土壤As化学形态转化和生物可给性的影响.结果表明,除堆肥和磷酸二氢钙处理外,其他3种改良剂均显著地提高土壤的pH值.BCR分级提取表明,土壤As主要以残渣态形式存在.添加磷酸二氢钙显著地提高了土壤As的移动性,而添加硫酸亚铁、骨炭、生物调理剂和堆肥却显著地降低了土壤As的移动性.培养1个月后,添加硫酸亚铁、骨炭和生物调理剂导致土壤酸可提取态As含量分别比对照处理降低86.65%、76.88%和34.19%.添加不同的改良剂对土壤As的生物可给性也有影响,除磷酸二氢钙处理外,硫酸亚铁、骨炭、生物调理剂和堆肥均显著性地降低了土壤As的生物可给性,其中硫酸亚铁处理对As的固定效果最好.培养2个月后,添加硫酸亚铁处理导致土壤As的生物可给性含量分别比对照降低90.76%,而添加磷酸二氢钙处理导致土壤As的生物可给性含量分别比对照提高1.81倍.硫酸亚铁、骨炭和生物调理剂可作为钝化As污染土壤的潜力材料.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回