Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物质炭上吸附的交互作用

赵保卫, 石夏颖, 马锋锋. Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物质炭上吸附的交互作用[J]. 环境化学, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003
引用本文: 赵保卫, 石夏颖, 马锋锋. Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物质炭上吸附的交互作用[J]. 环境化学, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003
ZHAO Baowei, SHI Xiaying, MA Fengfeng. Interacion between Cr(Ⅵ) and Cu(Ⅱ) adsorption onto biochars derived from flax and rape biomasses[J]. Environmental Chemistry, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003
Citation: ZHAO Baowei, SHI Xiaying, MA Fengfeng. Interacion between Cr(Ⅵ) and Cu(Ⅱ) adsorption onto biochars derived from flax and rape biomasses[J]. Environmental Chemistry, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003

Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物质炭上吸附的交互作用

  • 基金项目:

    国家自然科学基金(21167007,21467013)和高等学校博士学科点专项科研基金(20136204110003)资助.

Interacion between Cr(Ⅵ) and Cu(Ⅱ) adsorption onto biochars derived from flax and rape biomasses

  • Fund Project: Sponsored by the National Natural Science Foundation of China(21167007,21467013)and Specialized Research Fund for the Doctoral Program of Higher Education of China(20136204110003).
  • 摘要: 以胡麻、油菜的秸秆和油渣热解制得的4种生物炭为吸附剂,以批平衡吸附实验研究了Cr(Ⅵ)-Cu(Ⅱ)混合溶液体系中两种金属的吸附作用,考察吸附时间和初始金属浓度对吸附作用的影响,并与单一吸附体系对比,分析了可能的交互作用机制.发现混合体系中生物炭对Cr(Ⅵ)和Cu(Ⅱ)的吸附动力学和热力学规律与单一金属体系下相似,但生物炭对Cr(Ⅵ)的吸附量较单一Cr(Ⅵ)体系略有增加但不显著,而Cu(Ⅱ)的吸附量较单一Cu(Ⅱ)体系明显增大.表明两种金属在4种生物炭上的吸附存在交互作用,为协同吸附作用.交互作用的主要机制是两种金属离子间正负电荷的静电引力作用.
  • 加载中
  • [1] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011, 5(7):1441-1453.

    CAO X D, WEI X X, DAI G L, et al. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils:A review[J]. Chinese Journal of Environmental Engineering, 2011, 5(7):1441-1453(in Chinese).

    [2] 吴伟祥, 孙雪, 董达, 等. 生物质炭土壤环境效应[M]. 北京:科学出版社, 2015. WU W X, SUN X, DONG D, et al. Environmental Effects of Biochar in Soil[M]. Beijing:Science Press, 2015(in Chinese).
    [3] 王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5):768-780.

    WANG M M, ZHOU Q X. Environmental effects and their mechanisms of biochar applied to soils[J]. Environmental Chemistry, 2013, 32(5):768-780(in Chinese).

    [4] 毕丽君, 侯艳伟, 池海峰, 等. 生物炭输入对碳酸钙调控油菜生长及重金属富集的影响[J]. 环境化学, 2014, 33(8):1334-1341.

    BI L J, HOU Y W, CHI H F, et al. Effect of biochar input on the regulation of calcium carbonate application to rape growth and heavy metal accumulation in contaminated soil[J]. Environmental Chemistry, 2014, 33(8):1334-1341(in Chinese).

    [5] 孙红文, 张彦峰, 张闻. 生物炭与环境[M]. 北京:化学工业出版社, 2013. SUN H W, ZHANG Y F, ZHANG W. Biochar and Environment[M]. Beijing:Chemical Industry Press, 2013(in Chinese).
    [6] AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge[J]. Journal of Environmental Management, 2014, 133:309-314.
    [7] ZHANG W, MAO S, CHEN H, et al. Pb(Ⅱ) and Cr(Ⅵ) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J]. Bioresource Technology, 2013, 147:545-552.
    [8] CHEN T, ZHOU Z, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190:388-394.
    [9] DONG X, MA L Q, LI Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 2011, 190:909-915.
    [10] SHEN Y S, WANG S L, TZOU Y M, et al. Removal of hexavalent Cr by coconut coir and derived chars:The effect of surface functionality[J]. Bioresource Technology, 2012, 104:165-172.
    [11] ABDEL-FATTAH T M, MAHMOUD M E, AHMED S B, et al. Biochar from woody biomass for removing metal contaminants and carbon sequestration[J]. Journal of Industrial and Engineering Chemistry, 2015, 22:103-109.
    [12] ALEKSANDRA B, PATRYK O, RYSZARD D. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water[J]. Bioresource Technology, 2015, 196:540-549.
    [13] TONG X, XU R. Removal of Cu(Ⅱ) from acidic electroplating effluent by biochars generated from crop straws[J]. Journal of Environmental Sciences, 2013, 25(4):652-658.
    [14] LI M, LOU Z, WANG Y, et al. Alkali and alkaline earth metallic(AAEM) species leaching and Cu(Ⅱ) sorption by biochar[J]. Chemosphere, 2015, 119:778-785.
    [15] 孟梁, 侯静文, 郭琳, 等. 芦苇生物炭制备及其对Cu2+的吸附动力学[J]. 实验室研究与探索, 2015, 34(1):5-17.

    MENG L, HOU J W, GUO L, et al. Preparation of reed derived-biochar and its adsorption kinetic of Cu2+[J]. Research and Exploration in Laboratory, 2015, 34(1):5-17(in Chinese).

    [16] JIANG S, HUANG L, NGUYEN T A H, et al. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions[J]. Chemosphere, 2016, 142:64-71.
    [17] XU X, CAO X, ZHAO L. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:Role of mineral components in biochars[J]. Chemosphere, 2013, 92:955-961
    [18] PELLERA F M, GIANNIS A, KALDERIS D, et al. Adsorption of Cu(Ⅱ) ions from aqueous solutions on biochars prepared from agricultural by-products[J]. Journal of Environmental Management, 2012, 96(1):35-42.
    [19] TRAKAL L, ŠIGUT R, ŠILLEROVÁ H, et al. Copper removal from aqueous solution using biochar:Effect of chemical activation[J]. Arabian Journal of Chemistry, 2014, 7(1):43-52.
    [20] PARK J H, OK Y S, KIM S H, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions[J]. Chemosphere, 2016, 142:77-83.
    [21] 石夏颖. 油料作物生物炭的制备、表征及其对Cr(Ⅵ)和Cu(Ⅱ)的吸附性能研究[D]. 兰州:兰州交通大学硕士学位论文, 2014. SHI X Y. Preparation and characterization of biochars derived from oil crops and its adsorptive properties for Cr(Ⅵ) and Cu(Ⅱ)[D]. Lanzhou:Lanzhou Jiaotong University, 2014(in Chinese).
    [22] 刘继芳. 褐土中铜锌镉的竞争吸附动力学[D]. 北京:中国农业大学硕士学位论文, 2001. LIU J F. Competitive adsorption kinetics of copper zinc and cadmium in cinnamon soil[D]. Beijing:China Agricultural University, 2001(in Chinese).
    [23] 金宝丹. 纤维素改性及其吸附重金属离子的应用研究[D]. 阜新:辽宁工程技术大学硕士学位论文, 2010. JIN B D. Application research on cellulose modification and adsorption on heavy metal ions[D]. Fuxin:Liaoning Technical University, 2010(in Chinese).
  • 加载中
计量
  • 文章访问数:  1135
  • HTML全文浏览数:  1048
  • PDF下载数:  547
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-08-20
  • 刊出日期:  2016-02-15
赵保卫, 石夏颖, 马锋锋. Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物质炭上吸附的交互作用[J]. 环境化学, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003
引用本文: 赵保卫, 石夏颖, 马锋锋. Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物质炭上吸附的交互作用[J]. 环境化学, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003
ZHAO Baowei, SHI Xiaying, MA Fengfeng. Interacion between Cr(Ⅵ) and Cu(Ⅱ) adsorption onto biochars derived from flax and rape biomasses[J]. Environmental Chemistry, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003
Citation: ZHAO Baowei, SHI Xiaying, MA Fengfeng. Interacion between Cr(Ⅵ) and Cu(Ⅱ) adsorption onto biochars derived from flax and rape biomasses[J]. Environmental Chemistry, 2016, 35(2): 323-329. doi: 10.7524/j.issn.0254-6108.2016.02.2015082003

Cr(Ⅵ)和Cu(Ⅱ)在胡麻和油菜生物质炭上吸附的交互作用

  • 1. 兰州交通大学环境与市政工程学院, 兰州, 730070
基金项目:

国家自然科学基金(21167007,21467013)和高等学校博士学科点专项科研基金(20136204110003)资助.

摘要: 以胡麻、油菜的秸秆和油渣热解制得的4种生物炭为吸附剂,以批平衡吸附实验研究了Cr(Ⅵ)-Cu(Ⅱ)混合溶液体系中两种金属的吸附作用,考察吸附时间和初始金属浓度对吸附作用的影响,并与单一吸附体系对比,分析了可能的交互作用机制.发现混合体系中生物炭对Cr(Ⅵ)和Cu(Ⅱ)的吸附动力学和热力学规律与单一金属体系下相似,但生物炭对Cr(Ⅵ)的吸附量较单一Cr(Ⅵ)体系略有增加但不显著,而Cu(Ⅱ)的吸附量较单一Cu(Ⅱ)体系明显增大.表明两种金属在4种生物炭上的吸附存在交互作用,为协同吸附作用.交互作用的主要机制是两种金属离子间正负电荷的静电引力作用.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回