改良剂对土壤As钝化作用及生物可给性的影响

向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
引用本文: 向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
Citation: XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803

改良剂对土壤As钝化作用及生物可给性的影响

  • 基金项目:

    国家科技支撑计划项目(2015BAD05B02)和中央级公益性科研院所基本科研业务费专项资金(农业部环境保护科研监测所)项目资助.

Influence of amendments on inactivation and bio-accessibility of arsenic in soils

  • Fund Project: Supported by the National Science and Technology Support Program(2015BAD05B02), and Central Public Research Institutes Basic Funds for Research and Development(Agro-Environmental Protection Institute, Ministry of Agriculture).
  • 摘要: 采用室内土壤培养法研究不同改良剂(硫酸亚铁、骨炭、生物调理剂、磷酸二氢钙和堆肥)对土壤As化学形态转化和生物可给性的影响.结果表明,除堆肥和磷酸二氢钙处理外,其他3种改良剂均显著地提高土壤的pH值.BCR分级提取表明,土壤As主要以残渣态形式存在.添加磷酸二氢钙显著地提高了土壤As的移动性,而添加硫酸亚铁、骨炭、生物调理剂和堆肥却显著地降低了土壤As的移动性.培养1个月后,添加硫酸亚铁、骨炭和生物调理剂导致土壤酸可提取态As含量分别比对照处理降低86.65%、76.88%和34.19%.添加不同的改良剂对土壤As的生物可给性也有影响,除磷酸二氢钙处理外,硫酸亚铁、骨炭、生物调理剂和堆肥均显著性地降低了土壤As的生物可给性,其中硫酸亚铁处理对As的固定效果最好.培养2个月后,添加硫酸亚铁处理导致土壤As的生物可给性含量分别比对照降低90.76%,而添加磷酸二氢钙处理导致土壤As的生物可给性含量分别比对照提高1.81倍.硫酸亚铁、骨炭和生物调理剂可作为钝化As污染土壤的潜力材料.
  • 加载中
  • [1] 赵其国. 发展与创新创新现代土壤科学[J]. 土壤学报, 2003, 40(3):321-327.

    ZHAO Q G. Development and innovation of modern science[J]. Acta Pedolagica Sinica, 2003, 40(3):321-327(in Chinese).

    [2] SMITH E, NAIDU R, ALSTON A M. Arsenic in the soil environment:A review[J]. Advance in Agronomy, 1998, 64:149-195.
    [3] 孟紫强主编. 环境毒理学[M]. 北京:中国环境科学出版社, 2000, 146-157. MENG Z Q. Environmental toxicology[M]. Beijing:China Environmental Science Press, 2000, 146

    -157(in Chinese).

    [4] 黄益宗, 郝晓伟. 赤泥、骨炭和石灰对玉米吸收积累As、Pb和Zn的影响[J].农业环境科学学报, 2013, 32(3):456-462.

    HUANG Y Z, HAO X W. Effect of red mud, bone char and lime on uptake and accumulate of As, Pb and Zn by maize(Zea mays) planted in contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):456-462(in Chinese).

    [5] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendmentsA review[J]. Waste Management, 2008, 28(1):215-225.
    [6] ZHOU Y F, HAYNES R J. Sorption of heavy metals by inorganic and organic components of solid wastes:Significance to use of wastes as low-cost adsorbents and immobilizing agents[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(11):909-977.
    [7] 孙晓铧, 黄益宗, 伍文, 等. 改良剂对土壤Pb、Zn赋存形态的影响[J]. 环境化学, 2013, 32(5):881-885.

    SUN X H, HUANG Y Z, WU W, et al. Effect of several amendments on fractionation of Pb、Zn in contaminated soil[J]. Environmental Chemistry, 2013, 32(5):881-885(in Chinese).

    [8] 高卫国, 黄益宗, 雷鸣. 添加堆肥和赤泥对土壤生物有效性Cd、Zn的影响[J]. 环境工程学报, 2008, 2(1):78-82.

    GAO W G, HUANG Y Z, LEI M. Effects of compost and red mud addition on bioavaibility of Cd and Zn in soil[J]. Chinese Journal of Environmental Engineering, 2008, 2(1):78-82(in Chinese).

    [9] HUANG Y Z, HAO X W. Effect of red mud addition on the fractionation and bio-accessibility of Pb, Zn and As in combined contaminated soil[J]. Chemistry and Ecology, 2012, 28(1):37-48.
    [10] MIRETZKY P, CIRELLI A F. Remediation of arsenic-contaminated soils by iron amendments:a review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40:93-115.
    [11] 鲁如坤主编. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. LU R K. Soil chemical analysis[M]. Beijing:China Agricultural Science and Technology Press, 2000(in Chinese).
    [12] RAURET G, LóPEZ-SáNCHEZ J F. Application of a modified BCR sequential extraction(three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material(CRM483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content[J]. Journal of Environmental Monitoring, 2000, 2(3):228-233.
    [13] KIM J W, KIM K W, LEE J U, et al. Assessment of As and Heavy metal cotamination in the vicinity of duckum Au-Ag mine, Korea[J]. Environ Geochem Health, 2002, 24(3):215-227.
    [14] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4):539-543.

    DU C Y, ZU Y Q, LI Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4):539-543(in Chinese).

    [15] GARAU G, CASTALDI P, SANTONA L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma, 2007, 142(1/2):47-57.
    [16] 孙晓铧, 黄益宗, 肖可青, 等. 磷矿粉、骨炭和油菜秸秆对重金属复合污染土壤细菌和古菌数量的影响[J]. 农业环境科学学报, 2013, 32(3):565-571.

    SUN X H, HUANG Y Z, XIAO K Q, et al. Effects of phosphate rock, bone char and rape straw on quantity of bacteria and archaea in soils combined pollution by heavy metals[J]. Journal of Agro-Environment Science, 2013, 32(3):565-571(in Chinese).

    [17] 赵慧敏. 铁盐、生石灰对砷污染土壤固定、稳定化处理技术研究[D]. 北京:中国地质大学(北京)硕士学位论文, 2010. ZHAO H M. Study on solidification/stabilization technology of arsenic contaminated soils using molysite and quicklime[D]. Beijing:China University of Geosciences, 2010(in Chinese).
    [18] ZHAO H S, STANFORTH R. Competitive adsorption of phosphate and arsenate on goethite[J]. Environmental Science and technology, 2001, 35(24):4753-4757.
    [19] LOU L, ZHANG S Z, SHAN X Q, et al. Arsenate sorption on two Chinese red soils evaluated using macroscopic measurements and EXAFS spectroscopy[J]. Environmental Toxicology and Chemistry, 2006, 25(12):3118-3124.
    [20] 韦璐阳. 钙、镁、铁对土壤砷污染的治理研究[D]. 南宁:广西大学硕士学位论文, 2005. WEI L Y. Study on prevention and control of arsenic toxicity by Ca, Mg and Fe[D]. Nanning:Guangxi University, 2005(in Chinese).
    [21] Jackson B P, Miller W P. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species forms iron oxides[J]. Soil Science Society of America Journal, 2000, 64(5):1616-1622.
    [22] Bolan N, Mahimairaja S, Kunhikrishnan A, et al. Sorption-bioavailability nexus of arsenic and cadmium in variable charge soils[J]. Journal of Hazardous Materials, 2013, 261:725-732.
    [23] 郝晓伟, 黄益宗, 崔岩山, 等. 赤泥和骨炭对酸性土壤As化学形态及其生物可给性的影响[J]. 环境化学, 2010, 29(3):383-387.

    HAO X W, HUANG Y Z, CUI Y S, et al. Effevts of red mud and bone char addition in fraction and bio-accessibility of arsenic in contaminated soil[J]. Environmental Chemistry, 2010, 29(3):383-387(in Chinese).

  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览数:  1527
  • PDF下载数:  554
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-28
  • 刊出日期:  2016-02-15
向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
引用本文: 向猛, 黄益宗, 蔡立群, 保琼莉, 李季. 改良剂对土壤As钝化作用及生物可给性的影响[J]. 环境化学, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803
Citation: XIANG Meng, HUANG Yizong, CAI Liqun, BAO Qiongli, LI Ji. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J]. Environmental Chemistry, 2016, 35(2): 317-322. doi: 10.7524/j.issn.0254-6108.2016.02.2015092803

改良剂对土壤As钝化作用及生物可给性的影响

  • 1.  农业部环境保护科研监测所, 天津, 300191;
  • 2.  甘肃农业大学资源与环境学院, 兰州, 730070;
  • 3.  中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家科技支撑计划项目(2015BAD05B02)和中央级公益性科研院所基本科研业务费专项资金(农业部环境保护科研监测所)项目资助.

摘要: 采用室内土壤培养法研究不同改良剂(硫酸亚铁、骨炭、生物调理剂、磷酸二氢钙和堆肥)对土壤As化学形态转化和生物可给性的影响.结果表明,除堆肥和磷酸二氢钙处理外,其他3种改良剂均显著地提高土壤的pH值.BCR分级提取表明,土壤As主要以残渣态形式存在.添加磷酸二氢钙显著地提高了土壤As的移动性,而添加硫酸亚铁、骨炭、生物调理剂和堆肥却显著地降低了土壤As的移动性.培养1个月后,添加硫酸亚铁、骨炭和生物调理剂导致土壤酸可提取态As含量分别比对照处理降低86.65%、76.88%和34.19%.添加不同的改良剂对土壤As的生物可给性也有影响,除磷酸二氢钙处理外,硫酸亚铁、骨炭、生物调理剂和堆肥均显著性地降低了土壤As的生物可给性,其中硫酸亚铁处理对As的固定效果最好.培养2个月后,添加硫酸亚铁处理导致土壤As的生物可给性含量分别比对照降低90.76%,而添加磷酸二氢钙处理导致土壤As的生物可给性含量分别比对照提高1.81倍.硫酸亚铁、骨炭和生物调理剂可作为钝化As污染土壤的潜力材料.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回