大气PM2.5在线监测仪对SO42-、NO3-和NH4+的测定评价

袁超, 王韬, 高晓梅, 聂玮, 雷国强, 徐政, 王文兴. 大气PM2.5在线监测仪对SO42-、NO3-和NH4+的测定评价[J]. 环境化学, 2012, 31(11): 1808-1815.
引用本文: 袁超, 王韬, 高晓梅, 聂玮, 雷国强, 徐政, 王文兴. 大气PM2.5在线监测仪对SO42-、NO3-和NH4+的测定评价[J]. 环境化学, 2012, 31(11): 1808-1815.
YUAN Chao, WANG Tao, GAO Xiaomei, NIE Wei, XU Zheng, WANG Wenxing, . Evaluation of SO42-, NO3- and NH4+ measurements using ambient PM2.5 real-time monitoring instruments[J]. Environmental Chemistry, 2012, 31(11): 1808-1815.
Citation: YUAN Chao, WANG Tao, GAO Xiaomei, NIE Wei, XU Zheng, WANG Wenxing, . Evaluation of SO42-, NO3- and NH4+ measurements using ambient PM2.5 real-time monitoring instruments[J]. Environmental Chemistry, 2012, 31(11): 1808-1815.

大气PM2.5在线监测仪对SO42-、NO3-和NH4+的测定评价

  • 基金项目:

    香港环境及自然保育基金项目(2009-07)

    香港理工大学Niche Area Development(1-BB94)资助.

Evaluation of SO42-, NO3- and NH4+ measurements using ambient PM2.5 real-time monitoring instruments

  • Fund Project:
  • 摘要: 通过两套大气细颗粒物(PM2.5)水溶性离子在线监测仪与蜂巢式固气分离器膜采样系统作对比,评估了在线监测仪器对主要水溶性组分SO42-、NO3-和NH4+的测定结果.美国URG 公司生产的在线连续监测分析系统(AIM URG-9000B)对NH4+和NO3-的监测结果较好,但对SO42-的测定结果存在明显高估,其原因是AIM的平板溶蚀器系统无法完全去除大气中高浓度SO2,从而对SO42-的测定结果有干扰.为解决这一问题,进行了一系列实验,结果表明采用两个溶蚀器串联并用5 mmol·L-1 H2O2+5 mmol·L-1 NaOH混合溶液作吸收液时,高浓度的SO2(甚至达到260 μg·m-3)可以被完全吸收而对SO42-的测定结果不产生影响.由荷兰能源研究所(ECN)、Metrohm和Applikon共同研制的在线气体组分及气溶胶监测系统(MARGA,ADI2080)对NH4+和SO42-的监测结果较好,可以满足实验要求;但NO3-的测定结果偏高,其准确性需作进一步评估.新型监测仪器在不同大气环境中投入使用前需进行对比测试,以确定其准确性和精确性.
  • 加载中
  • [1] Gao X, Yang L, Cheng S, et al. Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: Temporal variations and source apportionments [J]. Atmospheric Environment, 2011, 45(33):6048-6056
    [2] Chow J. Measurement methods to determine compliance with ambient air quality standards for suspended particles [J]. Journal of Air and Waste Management Association, 1995, 45:320-382
    [3] Chan C, Yao X. Air pollution in mega cities in China [J]. Atmospheric Environment, 2008, 42 (1):1-42
    [4] Zhang Q, Jimenez J L, Canagaratna M R, et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes [J]. Geophysical Research Letters, 2007, 34 (13): L13801. doi:10.1029/2007GL029979
    [5] Hering S, Cass G. The magnitude of bias in the measurement of PM2.5 arising from volatilisation of particulate nitrate from Teflon filters [J]. Journal of Air and Waste Management Association, 1999, 49:725-733
    [6] Zhang X, McMurry P. Evaporative losses of fine particulate nitrates during sampling [J]. Atmospheric Environment, 1992, 26(18): 3305-3312
    [7] 寿幼平, 高晓梅, 王静, 等. 济南秋季大气 PM2.5 中水溶性离子的在线观测 [J]. 环境科学研究, 2010, 23: 41-47
    [8] Lee B K, Kim Y H, Lee D S. An automated and semi-continuous method for the analysis of water-soluble constituents in PM2.5 [J]. Science of The Total Environment, 2008, 393(1): 145-153
    [9] Du H, Kong L, Cheng T, et al. Insights into ammonium particle-to-gas conversion: Non-sulfate ammonium coupling with nitrate and chloride [J]. Aerosol and Air Quality Research, 2010, 10:589-595
    [10] Dall'Osto M, Harrison R M, Coe H, et al. Real time chemical characterization of local and regional nitrate aerosols [J]. Atmos Chem Phys, 2009, 9(11):3709-3720
    [11] Drewnick F, Schwab J, Hogrefe O, et al. Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments [J]. Atmospheric Environment, 2003, 37(24):3335-3350
    [12] Wittig A E, Takahama S, Khlystov A Y, et al. Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh air quality study [J]. Atmospheric Environment, 2004, 38(20): 3201-3213
    [13] Han J S, Moon K J, Kong B J. Characterization of physical, chemical and optical properties of ambient aerosol as a function of relative humidity at Gosan, Korea During ABC-EAREX 2005. The 2006 International Aerosol Conference, St. Paul, Minnesota, USA,2006
    [14] Zhou Y, Wang T, Gao X, et al. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534m asl) in central-eastern China [J]. Journal of Atmospheric Chemistry, 2010, 64(2-3):107-127
    [15] Wu W, Wang T. On the performance of a semi-continuous PM2.5 sulphate and nitrate instrument under high loadings of particulate and sulphur dioxide [J]. Atmospheric environment, 2007, 41(26):5442-5451
    [16] 周敏, 陈长虹, 王红丽. 上海市秋季典型大气高污染过程中颗粒物的化学组成变化特征[J].环境科学学报, 2012, 32(1):81-92
    [17] Li H, Han Z, Cheng T, et al. Agricultural fire impacts on the air quality of Shanghai during summer harvest time [J]. Aerosol and Air Quality Research, 2010, 10(2): 95-101
    [18] Makkonen U, Virkkula A, J Mäntykenttä, et al. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity [J]. Atmos Chem Phys Discuss, 2012, 12:4755-4796
    [19] Pathak R K, Yao X, Chan C. Sampling artifacts of acidity and ionic species in PM2.5 [J]. Environmental science & technology, 2004, 38(1): 254-259
    [20] Hirsch R M, Gilroy E J. Methods of fitting a straight line to data: examples in water resources [J]. Water Resources Bulletin, 1984, 20 (5):705-711
    [21] Takeuchi M, Li J, Morris K J, et al. Membrane-based parallel plate denuder for the collection and removal of soluble atmospheric gases [J]. Analytical chemistry, 2004, 76(4):1204-1210
  • 加载中
计量
  • 文章访问数:  842
  • HTML全文浏览数:  792
  • PDF下载数:  956
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-30
袁超, 王韬, 高晓梅, 聂玮, 雷国强, 徐政, 王文兴. 大气PM2.5在线监测仪对SO42-、NO3-和NH4+的测定评价[J]. 环境化学, 2012, 31(11): 1808-1815.
引用本文: 袁超, 王韬, 高晓梅, 聂玮, 雷国强, 徐政, 王文兴. 大气PM2.5在线监测仪对SO42-、NO3-和NH4+的测定评价[J]. 环境化学, 2012, 31(11): 1808-1815.
YUAN Chao, WANG Tao, GAO Xiaomei, NIE Wei, XU Zheng, WANG Wenxing, . Evaluation of SO42-, NO3- and NH4+ measurements using ambient PM2.5 real-time monitoring instruments[J]. Environmental Chemistry, 2012, 31(11): 1808-1815.
Citation: YUAN Chao, WANG Tao, GAO Xiaomei, NIE Wei, XU Zheng, WANG Wenxing, . Evaluation of SO42-, NO3- and NH4+ measurements using ambient PM2.5 real-time monitoring instruments[J]. Environmental Chemistry, 2012, 31(11): 1808-1815.

大气PM2.5在线监测仪对SO42-、NO3-和NH4+的测定评价

  • 1.  山东大学环境研究院, 济南, 250100;
  • 2.  香港理工大学土木及环境工程系, 香港;
  • 3.  香港特区政府环境保护署, 香港
基金项目:

香港环境及自然保育基金项目(2009-07)

香港理工大学Niche Area Development(1-BB94)资助.

摘要: 通过两套大气细颗粒物(PM2.5)水溶性离子在线监测仪与蜂巢式固气分离器膜采样系统作对比,评估了在线监测仪器对主要水溶性组分SO42-、NO3-和NH4+的测定结果.美国URG 公司生产的在线连续监测分析系统(AIM URG-9000B)对NH4+和NO3-的监测结果较好,但对SO42-的测定结果存在明显高估,其原因是AIM的平板溶蚀器系统无法完全去除大气中高浓度SO2,从而对SO42-的测定结果有干扰.为解决这一问题,进行了一系列实验,结果表明采用两个溶蚀器串联并用5 mmol·L-1 H2O2+5 mmol·L-1 NaOH混合溶液作吸收液时,高浓度的SO2(甚至达到260 μg·m-3)可以被完全吸收而对SO42-的测定结果不产生影响.由荷兰能源研究所(ECN)、Metrohm和Applikon共同研制的在线气体组分及气溶胶监测系统(MARGA,ADI2080)对NH4+和SO42-的监测结果较好,可以满足实验要求;但NO3-的测定结果偏高,其准确性需作进一步评估.新型监测仪器在不同大气环境中投入使用前需进行对比测试,以确定其准确性和精确性.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回