水汽对光腔衰荡光谱系统(CRDS)法测定CH4的影响

臧昆鹏, 方双喜, 周凌晞, 姚波, 张芳, 刘立新. 水汽对光腔衰荡光谱系统(CRDS)法测定CH4的影响[J]. 环境化学, 2012, 31(11): 1816-1820.
引用本文: 臧昆鹏, 方双喜, 周凌晞, 姚波, 张芳, 刘立新. 水汽对光腔衰荡光谱系统(CRDS)法测定CH4的影响[J]. 环境化学, 2012, 31(11): 1816-1820.
ZANG Kunpeng, FANG Shuangxi, ZHOU Lingxi, YAO Bo, ZHANG Fang, LIU Lixin. The influence of water wapor on the measurement of CH4 by CRDS system[J]. Environmental Chemistry, 2012, 31(11): 1816-1820.
Citation: ZANG Kunpeng, FANG Shuangxi, ZHOU Lingxi, YAO Bo, ZHANG Fang, LIU Lixin. The influence of water wapor on the measurement of CH4 by CRDS system[J]. Environmental Chemistry, 2012, 31(11): 1816-1820.

水汽对光腔衰荡光谱系统(CRDS)法测定CH4的影响

  • 基金项目:

    国家自然科学基金项目(41175116)

    国家重点基础研究发展计划(973)项目(2010CB950601)

    科技部国际合作项目(2011DFA21090)资助.

The influence of water wapor on the measurement of CH4 by CRDS system

  • Fund Project:
  • 摘要: 分析了CRDS法测定CH4浓度与水汽含量间的关系,并建立了水汽含量在0.50%-2.45%(体积比,以V/V表示,下同)范围内的有效校正方法.采用CRDS法对水汽含量为0.93%的CH4标气进行多次测量,测量值经校正后与理论值的偏差均小于2.0×10-9(体积比,以V/V表示,下同),最大偏差1.8×10-9, 优于大气本底CH4观测质控标准.校正瓦里关站CRDS系统试运行期间的CH4实测数据(水汽含量为0.50%-2.45%),与该站气相色谱-氢火焰离子化检测器系统(GC-FID系统,下同)同期测量结果相比,38.48%的数据偏差小于2.0×10-9,说明在系统未配备超低温冷阱除水单元之前,本文研究的校正方法适用于观测数据的校正.
  • 加载中
  • [1] Khalil M A K, Rasmussen R A. Atmospheric methane trends over the last 10000 years[J]. Atmos Environ, 1984, 21: 2445-2452
    [2] IPCC. Climate Change 2007: The Physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK: Cambridge University Press, 2007
    [3] World Meteorological Organization(WMO). Greenhouse gas bulletin: the state of greenhouse gases in the atmosphere using global observations through 2009 [R]. World Meteordogical Organization(WMO), 2010
    [4] 王木林,李兴生. 大气本底监测站的CH4, CO2和CO浓度的初步分析. 北京:气象出版社,1986: 172-185
    [5] Wang M X, Liu W W, Rasmussen R A, et al. Long-term trend and seasonal cycle of atmospheric methane [J]. Chinese Science Bulletin, 1990, 35(3): 213-216
    [6] Crutzen P J. On the role of CH4 in atmospheric chemistry: Sources, sinks and possible reductions in anthropogenic sources [J]. Ambio, 1995, 24(1): 52-55
    [7] Lelieveld J, Crutzen P J, Dentener F J. Changing concentration, lifetime and climate forcing of atmospheric methane [J]. Tellus, 1998, 50B(2): 128-150
    [8] Artuso F, Chamard P, Piacentino S, et al. Atmospheric methane in the Mediterranean: Analysis of measurements at the island of Lampedusa during 1995-2005 [J]. Atmospheric Environment, 2007, 41: 3877-3888
    [9] Zhou L X, Worthy D E J, Lang P M, et al. Ten years of atmospheric methane observations at a high elevation site in western China [J]. Atmospheric Environment, 2004,38: 7041-7054
    [10] 周凌晞,汤洁,张晓春,等.气相色谱法观测本底大气中的甲烷和二氧化碳[J]. 环境科学学报, 1998,18(4): 356-361
    [11] 周凌晞,汤洁,温玉璞,等.瓦里关山大气甲烷本底浓度变化特征的分析[J]. 应用气象学报, 1998, 9(4): 385-391
    [12] 周凌晞,李金龙,汤洁,等.瓦里关山大气CH4本底变化[J]. 环境科学学报, 2004, 24(2): 91-95
    [13] 周凌晞,周秀骥,张晓春,等.瓦里关温室气体本底研究的主要进展[J]. 气象学报, 2007, 65(3): 458-468
    [14] 刘立新,周凌晞,温民,等.中国4个国家级野外站大气CH4本底浓度变化特征[J]. 气候变化研究进展, 2009, 5(5): 285-290
    [15] 方双喜,周凌晞,张芳,等.双通道气相色谱法观测本底大气中的CH4、CO、N2O和SF6 [J]. 环境科学学报, 2010, 30(1): 52-59
    [16] Chen H, Winderlich J, Gerbig C, et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA [J]. Atmospheric Measurement Techniques, 2010, 3: 375-386
    [17] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapor [J]. Applied Physics, 2008, B92: 403-408
    [18] 臧昆鹏,周凌晞,方双喜,等. 新型CO2和CH4混合标气标校流程及方法[J]. 环境化学, 2011, 30(2): 505-510
    [19] 方双喜,周凌晞,臧昆鹏,等. 光强衰荡光谱(CRDS)法观测我国4个本底站大气CO2 [J]. 环境科学学报, 2010, 31(3): 624-629
    [20] Barbara A, Paldus, Alexandar A, et al. An historical overview of cavity methods (Einstein centennial review article) [J]. Canadian Journal of Physics, 2005, 83: 975-999
    [21] Wastine B, Kaiser C, Vuillemin C, et al. Evaluation of the Picarro EnviroSense 3000i analysers (now called G1301) for continuous CO2/CH4 measurements. EGU General Assembly 2009, Vienna Austria,2009:2562
    [22] Wahl Edward H, Tan S M, Koulikov Sergei, et al. Ultra-sensitive ethylene post-harvest monitor based on cavity ring-down spectroscopy [J]. Optics Express, 2006, 14(4): 1673-1684
    [23] Etheridgea D, Luhara A, Loha Z, et al. Atmospheric monitoring of the CO2 CRC Otway Project and lessons for large scale CO2 storage projects [J]. Energy Procedia, 2011, 4: 3666-3675
    [24] Turnbull J C, Karion A, Fischer M L, et al. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009[J]. Atmospheric Chemistry and Physics, 2011, 11: 705-721
    [25] Kessler John D, Valentine David L, Redmond Molly C, et al. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico[J]. Science, 2011, DOI:10.1126/science.1199697
    [26] Expert group recommendations. The 14th WMO/IAEA meeting of experts on carbon dioxide concentration and related tracers measurement techniques (WMO TD No.1487). Helsinki, Finland,2007
    [27] World Meteorological Organization(WMO). Global atmosphere watch measurements guide (WMO TD, No.1073)[C]. Geneva, Switzerland, 2001
  • 加载中
计量
  • 文章访问数:  1027
  • HTML全文浏览数:  987
  • PDF下载数:  583
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-01-16
臧昆鹏, 方双喜, 周凌晞, 姚波, 张芳, 刘立新. 水汽对光腔衰荡光谱系统(CRDS)法测定CH4的影响[J]. 环境化学, 2012, 31(11): 1816-1820.
引用本文: 臧昆鹏, 方双喜, 周凌晞, 姚波, 张芳, 刘立新. 水汽对光腔衰荡光谱系统(CRDS)法测定CH4的影响[J]. 环境化学, 2012, 31(11): 1816-1820.
ZANG Kunpeng, FANG Shuangxi, ZHOU Lingxi, YAO Bo, ZHANG Fang, LIU Lixin. The influence of water wapor on the measurement of CH4 by CRDS system[J]. Environmental Chemistry, 2012, 31(11): 1816-1820.
Citation: ZANG Kunpeng, FANG Shuangxi, ZHOU Lingxi, YAO Bo, ZHANG Fang, LIU Lixin. The influence of water wapor on the measurement of CH4 by CRDS system[J]. Environmental Chemistry, 2012, 31(11): 1816-1820.

水汽对光腔衰荡光谱系统(CRDS)法测定CH4的影响

  • 1.  中国气象科学研究院, 北京, 100081;
  • 2.  国家海洋环境监测中心, 大连, 116023
基金项目:

国家自然科学基金项目(41175116)

国家重点基础研究发展计划(973)项目(2010CB950601)

科技部国际合作项目(2011DFA21090)资助.

摘要: 分析了CRDS法测定CH4浓度与水汽含量间的关系,并建立了水汽含量在0.50%-2.45%(体积比,以V/V表示,下同)范围内的有效校正方法.采用CRDS法对水汽含量为0.93%的CH4标气进行多次测量,测量值经校正后与理论值的偏差均小于2.0×10-9(体积比,以V/V表示,下同),最大偏差1.8×10-9, 优于大气本底CH4观测质控标准.校正瓦里关站CRDS系统试运行期间的CH4实测数据(水汽含量为0.50%-2.45%),与该站气相色谱-氢火焰离子化检测器系统(GC-FID系统,下同)同期测量结果相比,38.48%的数据偏差小于2.0×10-9,说明在系统未配备超低温冷阱除水单元之前,本文研究的校正方法适用于观测数据的校正.

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回