Fenton氧化法修复石油污染土壤的研究进展

李方敏, 柳红霞. Fenton氧化法修复石油污染土壤的研究进展[J]. 环境化学, 2012, 31(11): 1759-1766.
引用本文: 李方敏, 柳红霞. Fenton氧化法修复石油污染土壤的研究进展[J]. 环境化学, 2012, 31(11): 1759-1766.
LI Fangmin, LIU Hongxia. Remediation of petroleum contaminated soil by Fenton oxidation method: A review[J]. Environmental Chemistry, 2012, 31(11): 1759-1766.
Citation: LI Fangmin, LIU Hongxia. Remediation of petroleum contaminated soil by Fenton oxidation method: A review[J]. Environmental Chemistry, 2012, 31(11): 1759-1766.

Fenton氧化法修复石油污染土壤的研究进展

  • 基金项目:

    中国科学院生态环境研究中心城市与区域生态国家重点实验室开放基金(SKLURE2012-2-2)和国家自然科学基金(41271482)资助.

Remediation of petroleum contaminated soil by Fenton oxidation method: A review

  • Fund Project:
  • 摘要: 传统的Fenton氧化法(Fe2+/H2O2)因反应速度过快、需要定期补充Fe2+、控制pH值≤3等方面的限制而影响到石油烃类污染土壤的修复效果.本文综述了近年来Fenton反应中氧化剂、催化剂的改进及其对土壤中石油污染物的去除效率,揭示了土壤性质、反应条件、污染物结构及非均相催化剂比表面积等因素对去除效率的影响,介绍了超声波前置处理后,Fenton试剂与土壤上解吸的石油污染物接触几率的增加及石油烃类可生物降解性的提高,促进了微生物的后续处理效果,并对该领域的研究趋势进行了展望.
  • 加载中
  • [1] Ferguson S H, Woinarski A Z, Snape I, et al. A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil[J]. Cold Reg Sci Technol, 2004, 40:47-60
    [2] 崔英杰, 杨世迎, 王萍, 等. Fenton原位化学氧化法修复有机污染土壤和地下水研究[J]. 化学进展, 2008, 20(7/8):1196

    -1201

    [3] Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. J Hazard Mater, 2008, 152(1):128-139
    [4] Mater L, Rosa E V C, Berto J, et al. A simple methodology to evaluate influence of H2O2 and Fe2+concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum[J]. J Hazard Mater, 2007, 149:379-386
    [5] 苏晓, 孙力平, 衣雪松, 等. Fenton试剂催化氧化嘧啶废水的特性[J]. 环境工程学报, 2009, 3(4):707-710
    [6]
    [7] Martins R C, Rossi A F, Quinta-Ferreira R M. Fenton's oxidation process for phenolic wastewater remediation and biodegradability enhancement[J]. J Hazard Mater, 2010, 180(1-3):716-721
    [8] Ahmad M, Simon M A, Sherrin A, et al. Treatment of polychlorinated biphenyls in two surface soils using catalyzed H2O2 propagations[J]. Chemosphere, 2011, 84:855-862
    [9] Gallard H, Delaat J. Kinetic modeling of Fe3+/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Water Res, 2000, 34:3107-3116
    [10] Watts R J, Teel A L. Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation[J]. J Environ Eng, 2005, 131:612-622
    [11] Baciocchi R, Boni M R, D'Aprile L. Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils[J]. J Hazard Mater, 2004, B107:97-102
    [12] Watts R J, Finn D D, Cutler L M, et al. Enhanced stability of hydrogen peroxide in the presence of subsurface soils[J]. J Contam Hydrol, 2007, 91:312-326
    [13] Vicente F, Rosas J M, Santos A, et al. Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process[J]. Chem Eng J, 2011, 172:689-697
    [14] Park J Y, Kim J H. Switching effects of electrode polarity and introduction direction of reagents in electrokinetic-Fenton process with anionic surfactant for remediating iron-rich soil contaminated with phenanthrene[J]. Electrochim Acta, 2011, 56:8094-8100
    [15] Gryzenia J, Cassidy D, Hampton D. Production and accumulation of surfactants during the chemical oxidation of PAH in soil[J]. Chemosphere, 2009, 77(4):540-545
    [16] Ndjou'ou A C, Cassidy D. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil[J]. Chemosphere, 2006, 65(9):1610-1615
    [17] Yen C H, Chen K F, Kao C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. J Hazard Mater, 2011, 186:2097-2102
    [18] Tsitonaki A, Smets B F, Bjerg P L. Effects of heat-activated persulfate oxidation on soil microorganisms[J]. Water Res, 2008, 42:1013-1022
    [19] Do S H, Kwon Y J, Kong S H. Effect of metal oxides on the reactivity of persulfate/ Fe(Ⅱ) in the remediation of diesel-contaminated soil and sand[J]. J Hazard Mater, 2010, 182:933-936
    [20] Sillanpää M E T, Kurniawan T A, Lo W. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP) [J]. Chemosphere, 2011, 83:1443-1460
    [21] Elshafei G M S, Yehia F Z, Dimitry O I H, et al. Degradation of nitrobenzene at near neutral pH using Fe2+-glutamate complex as a homogeneous Fenton catalyst[J]. Appl Cataly B: Environ, 2010, 99:242-247
    [22] Lu M, Zhang Zh, Qiao W, et al. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation[J]. J Hazard Mater, 2010, 179 (1/3):604-611
    [23] Lu M, Zhang Z, Qiao W, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation[J]. Biores Technol, 2010, 101(7):2106-2113
    [24] Yap C L, Gan S, Ng H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils[J]. Chemosphere, 2011, 83:1414-1430
    [25] Jonsson S, Persson Y, Frankki S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties[J]. J Hazard Mater, 2007, 149:86-96
    [26] Jonsson S, Persson Y, Frankki S, et al. Comparison of Fenton reagent and ozone oxidation of polycyclic aromatic hydrocarbon in aged contaminated soils[J]. J Soil Sedi, 2006, 6:208-214
    [27] Bissey L L, Smith J L, Watts R J. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent)[J]. Water Res, 2006, 40(13):2477-2484
    [28] Veignie E, Rafin C, Landy D, et al. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo pyrene[J]. J Hazard Mater, 2009, 168:1296-1301
    [29] 侯晨晨, 刘建国, 苏肇基, 等. 含苯酚危险废物的改进型Fenton氧化处理研究[J]. 环境工程学报, 2010, 4 (6):1405-1408
    [30] 杜勇超, 豆俊峰, 丁爱中, 等. 类Fenton试剂氧化降解土壤中PAHs及其影响因素研究[J]. 环境工程学报, 2011,5(8):1882-1886
    [31] Kanel S R, Neppolian B, Jung H, et al. Comparative removal of polycyclic aromatic hydrocarbons using iron oxide and hydrogen peroxide in soil slurries[J]. Environ Eng Sci, 2004, 21(6):741-751
    [32] Watts R J, Stanton P C, Howsawkeng J, et al. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide[J]. Water Res, 2002, 36:4283-4292
    [33] Kanel S R, Neppolian B, Choi H, et al. Heterogenous catalytic oxidation of phenanthrene by hydrogen peroxide in soil slurry: kinetic mechanism and implication[J]. Soil Sedi Contam, 2003,12(1):101-117
    [34] Tsai T T, Kao C M. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag[J]. J Hazard Mater, 2009, 170(1):466-472
    [35] Matta R, Hanna K, Chiron S. Fenton-like oxidation of 2, 4, 6-trinitrotoluene using different iron minerals[J]. Sci Total Environ, 2007, 385:242-251
    [36] Yeh C K, Hsu C, Chiu C, et al. Reaction efficiencies and rate constants for the goethite-catalysed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes[J]. J Hazard Mater, 2008,151(2-3):562-569
    [37] Kwan W P, Voelker B M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems[J]. Environ Sci Technol, 2003, 37:1150-1158
    [38] Martínez F, Calleja G, Melero J A, et al. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol[J]. Appl Catal B: Environ, 2007, 70:452-460
    [39] Valdés-Solís T, Valle-Vigón P, Álvarez S, et al. Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst[J]. Cataly Comm, 2007, 8:2037-2042
    [40] Zhang M, He F, Zhao D, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter[J]. Water Res, 2011, 45:2401-2414
    [41] Joo S H, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: Effects of catalyst and stabilizer[J]. Chemosphere, 2008, 70:418-425
    [42] 燕启社, 孙红文, 周长波, 等. 类Fenton氧化在污染土壤修复中的应用[J]. 生态环境, 2008, 17(1):216-220
    [43] Matta R, Hanna K, Kone T, et al. Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH[J]. Chem Eng J, 2008, 144:453-458
    [44] Villa R D, TrovóA G, Nogueira R F P. Environmental implications of soil remediation using the Fenton process[J]. Chemosphere, 2008, 71(1):43-50
    [45] Li H, Lei H, Yu Q, et al. Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL[J]. Chem Eng J, 2010, 160(2):417-422
    [46] Sun J H, Sun S P, Sun J Y, et al. Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation[J]. Ultrason Sonochem, 2007, 14(6):761-766
    [47] 张良波, 魏新利. 超声波/Fenton试剂联用降解水中的吡啶[J]. 环境化学, 2009, 28(3):364-368
    [48] 任百祥. 超声-Fenton高级氧化降解染料工业废水的研究[J]. 环境工程学报, 2010, 4(4):809-812
    [49] Torres R A, Abdelmalek F, Combet E, et al. A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters[J]. J Hazard Mater, 2007, 146(3):546-551
    [50] Mohapatra D P, Brar S K, Tyagi R D, et al. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge[J]. Ultrason Sonochem, 2011, 18:1018-1027
    [51] Flores R, Blass G, Domínguez V. Soil remediation by an advanced oxidative method assisted with ultrasonic energy[J]. J Hazard Mater, 2007, 140(1-2):399-402
    [52] Sui X, Ji G. Impact of ultrasonic power density on elution of super heavy oil and its biomarkers from aging soils using Triton X-100 micellar solution[J]. J Hazard Mater, 2010, 176(1-3):473-480
    [53] Mason T J, Collings A, Sumel A. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale[J]. Ultrason Sonochem, 2004, 11:205-210
    [54] Ji G, Guo F. Impact of ultrasonic power density on hot water elution of severely biodegraded heavy oil from weathered soils[J]. Chemosphere, 2010, 79(2):210-215
    [55] Ji G, Sui X. Impact of ultrasonic time on hot water elution of severely biodegraded heavy oil from weathered soils[J]. J Hazard Mater, 2010, 179(1-3):230-236
    [56] Valderrama C, Alessandri R, Aunola T, et al. Oxidation by Fenton's reagent combined with biological treatment applied to a creosote contaminated soil[J]. J Hazard Mater, 2009, 166(2-3):594-602
    [57] Xu J, Xin L, Huang T, et al. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation [J]. J Environ Sci, 2011, 23(11):1873-1879
    [58] Joo H S, Ndegwa P M, Shoda M, et al. Bioremediation of oil-contaminated soil using Candida catenulate and food waste [J]. Environ Pollution, 2008, 156:891-896
    [59] Liu C W, Liu H S. Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors[J]. Process Biochem, 2011, 46:202-209
    [60] Zhang Z, Hou Z, Yang C, et al. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8[J]. Biores Technol, 2011, 102:4111-4116
    [61] Ling J, Zhang G, Sun H, et al. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A[J].Sci Total Environ, 2011, 409:1994-2000
    [62] Bacosa H, Suto K, Inoue C. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium[J]. Interna Biodeter Biodegrad, 2010, 64:702-710
    [63] Tang X, He L Y, Tao X Q, et al. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil[J]. J Hazard Mater, 2010, 181:1158-1162
    [64] 宋雪英, 宋玉芳, 孙铁珩, 等. 石油污染土壤生物修复中外源微生物的影响[J]. 环境科学学报, 2007, 27(7): 1168-1173
    [65] Karamalidis A K, Evangelou A C, Karabika E, et al. Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet[J]. Biores Technol, 2010, 101:6545-6552
    [66] 陈立, 万力, 张发旺, 等. 土著微生物原位修复石油污染土壤试验研究[J]. 生态环境学报, 2010, 19(7):1686-1690
    [67] Gallego J R, Sierra C, Villa R, et al. Weathering processes only partially limit the potential for bioremediation of hydrocarbon-contaminated soils[J]. Org Geochem, 2010, 41:896-900
    [68] 乔俊, 陈威, 张承东. 添加不同营养助剂对石油污染土壤生物修复的影响[J]. 环境化学, 2010, 29(1):6-11
  • 加载中
计量
  • 文章访问数:  1686
  • HTML全文浏览数:  1545
  • PDF下载数:  1536
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-05
李方敏, 柳红霞. Fenton氧化法修复石油污染土壤的研究进展[J]. 环境化学, 2012, 31(11): 1759-1766.
引用本文: 李方敏, 柳红霞. Fenton氧化法修复石油污染土壤的研究进展[J]. 环境化学, 2012, 31(11): 1759-1766.
LI Fangmin, LIU Hongxia. Remediation of petroleum contaminated soil by Fenton oxidation method: A review[J]. Environmental Chemistry, 2012, 31(11): 1759-1766.
Citation: LI Fangmin, LIU Hongxia. Remediation of petroleum contaminated soil by Fenton oxidation method: A review[J]. Environmental Chemistry, 2012, 31(11): 1759-1766.

Fenton氧化法修复石油污染土壤的研究进展

  • 1.  长江大学化学与环境工程学院, 荆州, 434023;
  • 2.  长江中游湿地农业教育部工程技术研究中心, 荆州, 434025
基金项目:

中国科学院生态环境研究中心城市与区域生态国家重点实验室开放基金(SKLURE2012-2-2)和国家自然科学基金(41271482)资助.

摘要: 传统的Fenton氧化法(Fe2+/H2O2)因反应速度过快、需要定期补充Fe2+、控制pH值≤3等方面的限制而影响到石油烃类污染土壤的修复效果.本文综述了近年来Fenton反应中氧化剂、催化剂的改进及其对土壤中石油污染物的去除效率,揭示了土壤性质、反应条件、污染物结构及非均相催化剂比表面积等因素对去除效率的影响,介绍了超声波前置处理后,Fenton试剂与土壤上解吸的石油污染物接触几率的增加及石油烃类可生物降解性的提高,促进了微生物的后续处理效果,并对该领域的研究趋势进行了展望.

English Abstract

参考文献 (68)

返回顶部

目录

/

返回文章
返回