[1] |
Ferguson S H, Woinarski A Z, Snape I, et al. A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil[J]. Cold Reg Sci Technol, 2004, 40:47-60
|
[2] |
崔英杰, 杨世迎, 王萍, 等. Fenton原位化学氧化法修复有机污染土壤和地下水研究[J]. 化学进展, 2008, 20(7/8):1196
-1201
|
[3] |
Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. J Hazard Mater, 2008, 152(1):128-139
|
[4] |
Mater L, Rosa E V C, Berto J, et al. A simple methodology to evaluate influence of H2O2 and Fe2+concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum[J]. J Hazard Mater, 2007, 149:379-386
|
[5] |
苏晓, 孙力平, 衣雪松, 等. Fenton试剂催化氧化嘧啶废水的特性[J]. 环境工程学报, 2009, 3(4):707-710
|
[6] |
|
[7] |
Martins R C, Rossi A F, Quinta-Ferreira R M. Fenton's oxidation process for phenolic wastewater remediation and biodegradability enhancement[J]. J Hazard Mater, 2010, 180(1-3):716-721
|
[8] |
Ahmad M, Simon M A, Sherrin A, et al. Treatment of polychlorinated biphenyls in two surface soils using catalyzed H2O2 propagations[J]. Chemosphere, 2011, 84:855-862
|
[9] |
Gallard H, Delaat J. Kinetic modeling of Fe3+/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Water Res, 2000, 34:3107-3116
|
[10] |
Watts R J, Teel A L. Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation[J]. J Environ Eng, 2005, 131:612-622
|
[11] |
Baciocchi R, Boni M R, D'Aprile L. Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils[J]. J Hazard Mater, 2004, B107:97-102
|
[12] |
Watts R J, Finn D D, Cutler L M, et al. Enhanced stability of hydrogen peroxide in the presence of subsurface soils[J]. J Contam Hydrol, 2007, 91:312-326
|
[13] |
Vicente F, Rosas J M, Santos A, et al. Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process[J]. Chem Eng J, 2011, 172:689-697
|
[14] |
Park J Y, Kim J H. Switching effects of electrode polarity and introduction direction of reagents in electrokinetic-Fenton process with anionic surfactant for remediating iron-rich soil contaminated with phenanthrene[J]. Electrochim Acta, 2011, 56:8094-8100
|
[15] |
Gryzenia J, Cassidy D, Hampton D. Production and accumulation of surfactants during the chemical oxidation of PAH in soil[J]. Chemosphere, 2009, 77(4):540-545
|
[16] |
Ndjou'ou A C, Cassidy D. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil[J]. Chemosphere, 2006, 65(9):1610-1615
|
[17] |
Yen C H, Chen K F, Kao C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. J Hazard Mater, 2011, 186:2097-2102
|
[18] |
Tsitonaki A, Smets B F, Bjerg P L. Effects of heat-activated persulfate oxidation on soil microorganisms[J]. Water Res, 2008, 42:1013-1022
|
[19] |
Do S H, Kwon Y J, Kong S H. Effect of metal oxides on the reactivity of persulfate/ Fe(Ⅱ) in the remediation of diesel-contaminated soil and sand[J]. J Hazard Mater, 2010, 182:933-936
|
[20] |
Sillanpää M E T, Kurniawan T A, Lo W. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP) [J]. Chemosphere, 2011, 83:1443-1460
|
[21] |
Elshafei G M S, Yehia F Z, Dimitry O I H, et al. Degradation of nitrobenzene at near neutral pH using Fe2+-glutamate complex as a homogeneous Fenton catalyst[J]. Appl Cataly B: Environ, 2010, 99:242-247
|
[22] |
Lu M, Zhang Zh, Qiao W, et al. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation[J]. J Hazard Mater, 2010, 179 (1/3):604-611
|
[23] |
Lu M, Zhang Z, Qiao W, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation[J]. Biores Technol, 2010, 101(7):2106-2113
|
[24] |
Yap C L, Gan S, Ng H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils[J]. Chemosphere, 2011, 83:1414-1430
|
[25] |
Jonsson S, Persson Y, Frankki S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties[J]. J Hazard Mater, 2007, 149:86-96
|
[26] |
Jonsson S, Persson Y, Frankki S, et al. Comparison of Fenton reagent and ozone oxidation of polycyclic aromatic hydrocarbon in aged contaminated soils[J]. J Soil Sedi, 2006, 6:208-214
|
[27] |
Bissey L L, Smith J L, Watts R J. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent)[J]. Water Res, 2006, 40(13):2477-2484
|
[28] |
Veignie E, Rafin C, Landy D, et al. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo pyrene[J]. J Hazard Mater, 2009, 168:1296-1301
|
[29] |
侯晨晨, 刘建国, 苏肇基, 等. 含苯酚危险废物的改进型Fenton氧化处理研究[J]. 环境工程学报, 2010, 4 (6):1405-1408
|
[30] |
杜勇超, 豆俊峰, 丁爱中, 等. 类Fenton试剂氧化降解土壤中PAHs及其影响因素研究[J]. 环境工程学报, 2011,5(8):1882-1886
|
[31] |
Kanel S R, Neppolian B, Jung H, et al. Comparative removal of polycyclic aromatic hydrocarbons using iron oxide and hydrogen peroxide in soil slurries[J]. Environ Eng Sci, 2004, 21(6):741-751
|
[32] |
Watts R J, Stanton P C, Howsawkeng J, et al. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide[J]. Water Res, 2002, 36:4283-4292
|
[33] |
Kanel S R, Neppolian B, Choi H, et al. Heterogenous catalytic oxidation of phenanthrene by hydrogen peroxide in soil slurry: kinetic mechanism and implication[J]. Soil Sedi Contam, 2003,12(1):101-117
|
[34] |
Tsai T T, Kao C M. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag[J]. J Hazard Mater, 2009, 170(1):466-472
|
[35] |
Matta R, Hanna K, Chiron S. Fenton-like oxidation of 2, 4, 6-trinitrotoluene using different iron minerals[J]. Sci Total Environ, 2007, 385:242-251
|
[36] |
Yeh C K, Hsu C, Chiu C, et al. Reaction efficiencies and rate constants for the goethite-catalysed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes[J]. J Hazard Mater, 2008,151(2-3):562-569
|
[37] |
Kwan W P, Voelker B M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems[J]. Environ Sci Technol, 2003, 37:1150-1158
|
[38] |
Martínez F, Calleja G, Melero J A, et al. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol[J]. Appl Catal B: Environ, 2007, 70:452-460
|
[39] |
Valdés-Solís T, Valle-Vigón P, Álvarez S, et al. Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst[J]. Cataly Comm, 2007, 8:2037-2042
|
[40] |
Zhang M, He F, Zhao D, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter[J]. Water Res, 2011, 45:2401-2414
|
[41] |
Joo S H, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: Effects of catalyst and stabilizer[J]. Chemosphere, 2008, 70:418-425
|
[42] |
燕启社, 孙红文, 周长波, 等. 类Fenton氧化在污染土壤修复中的应用[J]. 生态环境, 2008, 17(1):216-220
|
[43] |
Matta R, Hanna K, Kone T, et al. Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH[J]. Chem Eng J, 2008, 144:453-458
|
[44] |
Villa R D, TrovóA G, Nogueira R F P. Environmental implications of soil remediation using the Fenton process[J]. Chemosphere, 2008, 71(1):43-50
|
[45] |
Li H, Lei H, Yu Q, et al. Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL[J]. Chem Eng J, 2010, 160(2):417-422
|
[46] |
Sun J H, Sun S P, Sun J Y, et al. Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation[J]. Ultrason Sonochem, 2007, 14(6):761-766
|
[47] |
张良波, 魏新利. 超声波/Fenton试剂联用降解水中的吡啶[J]. 环境化学, 2009, 28(3):364-368
|
[48] |
任百祥. 超声-Fenton高级氧化降解染料工业废水的研究[J]. 环境工程学报, 2010, 4(4):809-812
|
[49] |
Torres R A, Abdelmalek F, Combet E, et al. A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters[J]. J Hazard Mater, 2007, 146(3):546-551
|
[50] |
Mohapatra D P, Brar S K, Tyagi R D, et al. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge[J]. Ultrason Sonochem, 2011, 18:1018-1027
|
[51] |
Flores R, Blass G, Domínguez V. Soil remediation by an advanced oxidative method assisted with ultrasonic energy[J]. J Hazard Mater, 2007, 140(1-2):399-402
|
[52] |
Sui X, Ji G. Impact of ultrasonic power density on elution of super heavy oil and its biomarkers from aging soils using Triton X-100 micellar solution[J]. J Hazard Mater, 2010, 176(1-3):473-480
|
[53] |
Mason T J, Collings A, Sumel A. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale[J]. Ultrason Sonochem, 2004, 11:205-210
|
[54] |
Ji G, Guo F. Impact of ultrasonic power density on hot water elution of severely biodegraded heavy oil from weathered soils[J]. Chemosphere, 2010, 79(2):210-215
|
[55] |
Ji G, Sui X. Impact of ultrasonic time on hot water elution of severely biodegraded heavy oil from weathered soils[J]. J Hazard Mater, 2010, 179(1-3):230-236
|
[56] |
Valderrama C, Alessandri R, Aunola T, et al. Oxidation by Fenton's reagent combined with biological treatment applied to a creosote contaminated soil[J]. J Hazard Mater, 2009, 166(2-3):594-602
|
[57] |
Xu J, Xin L, Huang T, et al. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation [J]. J Environ Sci, 2011, 23(11):1873-1879
|
[58] |
Joo H S, Ndegwa P M, Shoda M, et al. Bioremediation of oil-contaminated soil using Candida catenulate and food waste [J]. Environ Pollution, 2008, 156:891-896
|
[59] |
Liu C W, Liu H S. Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors[J]. Process Biochem, 2011, 46:202-209
|
[60] |
Zhang Z, Hou Z, Yang C, et al. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8[J]. Biores Technol, 2011, 102:4111-4116
|
[61] |
Ling J, Zhang G, Sun H, et al. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A[J].Sci Total Environ, 2011, 409:1994-2000
|
[62] |
Bacosa H, Suto K, Inoue C. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium[J]. Interna Biodeter Biodegrad, 2010, 64:702-710
|
[63] |
Tang X, He L Y, Tao X Q, et al. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil[J]. J Hazard Mater, 2010, 181:1158-1162
|
[64] |
宋雪英, 宋玉芳, 孙铁珩, 等. 石油污染土壤生物修复中外源微生物的影响[J]. 环境科学学报, 2007, 27(7): 1168-1173
|
[65] |
Karamalidis A K, Evangelou A C, Karabika E, et al. Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet[J]. Biores Technol, 2010, 101:6545-6552
|
[66] |
陈立, 万力, 张发旺, 等. 土著微生物原位修复石油污染土壤试验研究[J]. 生态环境学报, 2010, 19(7):1686-1690
|
[67] |
Gallego J R, Sierra C, Villa R, et al. Weathering processes only partially limit the potential for bioremediation of hydrocarbon-contaminated soils[J]. Org Geochem, 2010, 41:896-900
|
[68] |
乔俊, 陈威, 张承东. 添加不同营养助剂对石油污染土壤生物修复的影响[J]. 环境化学, 2010, 29(1):6-11
|