[1] Ferguson S H, Woinarski A Z, Snape I, et al. A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil[J]. Cold Reg Sci Technol, 2004, 40:47-60
[2] 崔英杰, 杨世迎, 王萍, 等. Fenton原位化学氧化法修复有机污染土壤和地下水研究[J]. 化学进展, 2008, 20(7/8):1196 -1201
[3] Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. J Hazard Mater, 2008, 152(1):128-139
[4] Mater L, Rosa E V C, Berto J, et al. A simple methodology to evaluate influence of H2O2 and Fe2+concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum[J]. J Hazard Mater, 2007, 149:379-386
[5] 苏晓, 孙力平, 衣雪松, 等. Fenton试剂催化氧化嘧啶废水的特性[J]. 环境工程学报, 2009, 3(4):707-710
[6]
[7] Martins R C, Rossi A F, Quinta-Ferreira R M. Fenton's oxidation process for phenolic wastewater remediation and biodegradability enhancement[J]. J Hazard Mater, 2010, 180(1-3):716-721
[8] Ahmad M, Simon M A, Sherrin A, et al. Treatment of polychlorinated biphenyls in two surface soils using catalyzed H2O2 propagations[J]. Chemosphere, 2011, 84:855-862
[9] Gallard H, Delaat J. Kinetic modeling of Fe3+/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Water Res, 2000, 34:3107-3116
[10] Watts R J, Teel A L. Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation[J]. J Environ Eng, 2005, 131:612-622
[11] Baciocchi R, Boni M R, D'Aprile L. Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils[J]. J Hazard Mater, 2004, B107:97-102
[12] Watts R J, Finn D D, Cutler L M, et al. Enhanced stability of hydrogen peroxide in the presence of subsurface soils[J]. J Contam Hydrol, 2007, 91:312-326
[13] Vicente F, Rosas J M, Santos A, et al. Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process[J]. Chem Eng J, 2011, 172:689-697
[14] Park J Y, Kim J H. Switching effects of electrode polarity and introduction direction of reagents in electrokinetic-Fenton process with anionic surfactant for remediating iron-rich soil contaminated with phenanthrene[J]. Electrochim Acta, 2011, 56:8094-8100
[15] Gryzenia J, Cassidy D, Hampton D. Production and accumulation of surfactants during the chemical oxidation of PAH in soil[J]. Chemosphere, 2009, 77(4):540-545
[16] Ndjou'ou A C, Cassidy D. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil[J]. Chemosphere, 2006, 65(9):1610-1615
[17] Yen C H, Chen K F, Kao C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. J Hazard Mater, 2011, 186:2097-2102
[18] Tsitonaki A, Smets B F, Bjerg P L. Effects of heat-activated persulfate oxidation on soil microorganisms[J]. Water Res, 2008, 42:1013-1022
[19] Do S H, Kwon Y J, Kong S H. Effect of metal oxides on the reactivity of persulfate/ Fe(Ⅱ) in the remediation of diesel-contaminated soil and sand[J]. J Hazard Mater, 2010, 182:933-936
[20] Sillanpää M E T, Kurniawan T A, Lo W. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP) [J]. Chemosphere, 2011, 83:1443-1460
[21] Elshafei G M S, Yehia F Z, Dimitry O I H, et al. Degradation of nitrobenzene at near neutral pH using Fe2+-glutamate complex as a homogeneous Fenton catalyst[J]. Appl Cataly B: Environ, 2010, 99:242-247
[22] Lu M, Zhang Zh, Qiao W, et al. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation[J]. J Hazard Mater, 2010, 179 (1/3):604-611
[23] Lu M, Zhang Z, Qiao W, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation[J]. Biores Technol, 2010, 101(7):2106-2113
[24] Yap C L, Gan S, Ng H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils[J]. Chemosphere, 2011, 83:1414-1430
[25] Jonsson S, Persson Y, Frankki S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties[J]. J Hazard Mater, 2007, 149:86-96
[26] Jonsson S, Persson Y, Frankki S, et al. Comparison of Fenton reagent and ozone oxidation of polycyclic aromatic hydrocarbon in aged contaminated soils[J]. J Soil Sedi, 2006, 6:208-214
[27] Bissey L L, Smith J L, Watts R J. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent)[J]. Water Res, 2006, 40(13):2477-2484
[28] Veignie E, Rafin C, Landy D, et al. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo pyrene[J]. J Hazard Mater, 2009, 168:1296-1301
[29] 侯晨晨, 刘建国, 苏肇基, 等. 含苯酚危险废物的改进型Fenton氧化处理研究[J]. 环境工程学报, 2010, 4 (6):1405-1408
[30] 杜勇超, 豆俊峰, 丁爱中, 等. 类Fenton试剂氧化降解土壤中PAHs及其影响因素研究[J]. 环境工程学报, 2011,5(8):1882-1886
[31] Kanel S R, Neppolian B, Jung H, et al. Comparative removal of polycyclic aromatic hydrocarbons using iron oxide and hydrogen peroxide in soil slurries[J]. Environ Eng Sci, 2004, 21(6):741-751
[32] Watts R J, Stanton P C, Howsawkeng J, et al. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide[J]. Water Res, 2002, 36:4283-4292
[33] Kanel S R, Neppolian B, Choi H, et al. Heterogenous catalytic oxidation of phenanthrene by hydrogen peroxide in soil slurry: kinetic mechanism and implication[J]. Soil Sedi Contam, 2003,12(1):101-117
[34] Tsai T T, Kao C M. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag[J]. J Hazard Mater, 2009, 170(1):466-472
[35] Matta R, Hanna K, Chiron S. Fenton-like oxidation of 2, 4, 6-trinitrotoluene using different iron minerals[J]. Sci Total Environ, 2007, 385:242-251
[36] Yeh C K, Hsu C, Chiu C, et al. Reaction efficiencies and rate constants for the goethite-catalysed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes[J]. J Hazard Mater, 2008,151(2-3):562-569
[37] Kwan W P, Voelker B M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems[J]. Environ Sci Technol, 2003, 37:1150-1158
[38] Martínez F, Calleja G, Melero J A, et al. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol[J]. Appl Catal B: Environ, 2007, 70:452-460
[39] Valdés-Solís T, Valle-Vigón P, Álvarez S, et al. Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst[J]. Cataly Comm, 2007, 8:2037-2042
[40] Zhang M, He F, Zhao D, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter[J]. Water Res, 2011, 45:2401-2414
[41] Joo S H, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: Effects of catalyst and stabilizer[J]. Chemosphere, 2008, 70:418-425
[42] 燕启社, 孙红文, 周长波, 等. 类Fenton氧化在污染土壤修复中的应用[J]. 生态环境, 2008, 17(1):216-220
[43] Matta R, Hanna K, Kone T, et al. Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH[J]. Chem Eng J, 2008, 144:453-458
[44] Villa R D, TrovóA G, Nogueira R F P. Environmental implications of soil remediation using the Fenton process[J]. Chemosphere, 2008, 71(1):43-50
[45] Li H, Lei H, Yu Q, et al. Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL[J]. Chem Eng J, 2010, 160(2):417-422
[46] Sun J H, Sun S P, Sun J Y, et al. Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation[J]. Ultrason Sonochem, 2007, 14(6):761-766
[47] 张良波, 魏新利. 超声波/Fenton试剂联用降解水中的吡啶[J]. 环境化学, 2009, 28(3):364-368
[48] 任百祥. 超声-Fenton高级氧化降解染料工业废水的研究[J]. 环境工程学报, 2010, 4(4):809-812
[49] Torres R A, Abdelmalek F, Combet E, et al. A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters[J]. J Hazard Mater, 2007, 146(3):546-551
[50] Mohapatra D P, Brar S K, Tyagi R D, et al. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge[J]. Ultrason Sonochem, 2011, 18:1018-1027
[51] Flores R, Blass G, Domínguez V. Soil remediation by an advanced oxidative method assisted with ultrasonic energy[J]. J Hazard Mater, 2007, 140(1-2):399-402
[52] Sui X, Ji G. Impact of ultrasonic power density on elution of super heavy oil and its biomarkers from aging soils using Triton X-100 micellar solution[J]. J Hazard Mater, 2010, 176(1-3):473-480
[53] Mason T J, Collings A, Sumel A. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale[J]. Ultrason Sonochem, 2004, 11:205-210
[54] Ji G, Guo F. Impact of ultrasonic power density on hot water elution of severely biodegraded heavy oil from weathered soils[J]. Chemosphere, 2010, 79(2):210-215
[55] Ji G, Sui X. Impact of ultrasonic time on hot water elution of severely biodegraded heavy oil from weathered soils[J]. J Hazard Mater, 2010, 179(1-3):230-236
[56] Valderrama C, Alessandri R, Aunola T, et al. Oxidation by Fenton's reagent combined with biological treatment applied to a creosote contaminated soil[J]. J Hazard Mater, 2009, 166(2-3):594-602
[57] Xu J, Xin L, Huang T, et al. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation [J]. J Environ Sci, 2011, 23(11):1873-1879
[58] Joo H S, Ndegwa P M, Shoda M, et al. Bioremediation of oil-contaminated soil using Candida catenulate and food waste [J]. Environ Pollution, 2008, 156:891-896
[59] Liu C W, Liu H S. Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors[J]. Process Biochem, 2011, 46:202-209
[60] Zhang Z, Hou Z, Yang C, et al. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8[J]. Biores Technol, 2011, 102:4111-4116
[61] Ling J, Zhang G, Sun H, et al. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A[J].Sci Total Environ, 2011, 409:1994-2000
[62] Bacosa H, Suto K, Inoue C. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium[J]. Interna Biodeter Biodegrad, 2010, 64:702-710
[63] Tang X, He L Y, Tao X Q, et al. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil[J]. J Hazard Mater, 2010, 181:1158-1162
[64] 宋雪英, 宋玉芳, 孙铁珩, 等. 石油污染土壤生物修复中外源微生物的影响[J]. 环境科学学报, 2007, 27(7): 1168-1173
[65] Karamalidis A K, Evangelou A C, Karabika E, et al. Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet[J]. Biores Technol, 2010, 101:6545-6552
[66] 陈立, 万力, 张发旺, 等. 土著微生物原位修复石油污染土壤试验研究[J]. 生态环境学报, 2010, 19(7):1686-1690
[67] Gallego J R, Sierra C, Villa R, et al. Weathering processes only partially limit the potential for bioremediation of hydrocarbon-contaminated soils[J]. Org Geochem, 2010, 41:896-900
[68] 乔俊, 陈威, 张承东. 添加不同营养助剂对石油污染土壤生物修复的影响[J]. 环境化学, 2010, 29(1):6-11