影响沉积物-水界面持久性有机污染物迁移行为的因素研究

戴国华, 刘新会. 影响沉积物-水界面持久性有机污染物迁移行为的因素研究[J]. 环境化学, 2011, 30(1): 224-230.
引用本文: 戴国华, 刘新会. 影响沉积物-水界面持久性有机污染物迁移行为的因素研究[J]. 环境化学, 2011, 30(1): 224-230.
DAI Guohua, LIU Xinhui. FACTORS AFFACTING THE MIGRATION OF PERSISTENT ORGANIC POLLUTANTS ACROSS THE SEDIMENT-WATER INTERFACE OF AQUATIC ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 224-230.
Citation: DAI Guohua, LIU Xinhui. FACTORS AFFACTING THE MIGRATION OF PERSISTENT ORGANIC POLLUTANTS ACROSS THE SEDIMENT-WATER INTERFACE OF AQUATIC ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 224-230.

影响沉积物-水界面持久性有机污染物迁移行为的因素研究

  • 基金项目:

    国家自然科学基金面上项目 (40871218)资助.

FACTORS AFFACTING THE MIGRATION OF PERSISTENT ORGANIC POLLUTANTS ACROSS THE SEDIMENT-WATER INTERFACE OF AQUATIC ENVIRONMENT

  • Fund Project:
  • 摘要: 沉积物-水界面是自然水体在物理、化学和生物特征等方面差异性最显著的环境边界,界面及附近发生的物理和化学反应,如吸附和解吸、迁移和转化、扩散和掩埋以及生物扰动等作用是控制和调节水体和沉积物之间物质输送和交换的重要途径.持久性有机污染物由于其具有致癌、致畸、致突变及内分泌干扰作用而受到人们的广泛关注,它们在沉积物-水界面的迁移行为决定了其对环境和人类的潜在威胁.本文综述了影响持久性有机污染物在沉积物-水界面迁移行为的诸多因素,包括环境因子和动力学因素,并对当前研究中存在的问题及今后需加强的研究领域提出了建议.
  • 加载中
  • [1] Tanabe S, Iwata H, Tatsukawa R. Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals[J]. Sci Total Environ, 1994, 154: 163-177
    [2] Mackay D, Paterson S. Evaluation the multimedia fate of organic chemical: A level Ⅲ fugacity model[J]. Environ Sci Technol, 1991, 25: 427-436
    [3] Tengberg A, Almroth E, Hall P. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology[J]. J Exp Mar Biol Ecol, 2003, 285-286: 19-142
    [4] Lick W. The sediment-water flux of HOCs due to "diffusion" or is there a well-mixed layer? If there is, does it matter?[J]. Environ Sci Technol, 2006, 40: 5610-5617
    [5] Schneider A R, Porter E T, Backer J E. Polychlorinated biphenyl release from resuspended Hudson River sediment.[J] Environ Sci Technol, 2007, 41: 1097-1103
    [6] 刘 敏,许世远,侯立军,长江口潮滩沉积物-水界面营养盐环境生物地球化学过程(第一版)[M]. 北京:科学出版社, 2007:92-160
    [7] Gao Y Z, Xiong W, Ling W T, et al. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils[J]. J Hazard Mater, 2006, 134: 8-18
    [8] Xu J, Yu Y, Wang P, et al. Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China[J]. Chemosphere, 2007, 67: 1403-1407
    [9] Johson, W P, Amy G L. Facilitated transport and enhanced desorption of PAHs by natural organic in aquifer sediments[J]. Environ Sci Technol,1995, 29: 807-817
    [10] 周岩梅,刘瑞霞,汤鸿霄. 溶解有机质在土壤及沉积物吸附多环芳烃有机污染物过程中的作用研究[J]. 环境科学学报,2003, 23(2): 216-233
    [11] Perminova I V, Gerchishcheva N Y, Petrosyan V S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors[J]. Environ Sci Technol, 1999, 33: 3781-1787
    [12] 贾可欣,麦碧娴,盛国英,等. 珠江广州河段不同粒径沉积物中多氯联苯(PCBs)的分布特征[J]. 地球化学,2003, 32(6): 606-612
    [13] Rockne K J, Shor L M, Young L Y, et al. Distributed sequestration and release of PAHs in weathered sediment: The role of sediment structure and organic carbon properties[J]. Environ Sci Technol, 2002, 36: 2636-2644
    [14] Ghosh U, Gillette J S, Luthy R G, et al. Microscale location, characterization and association of polycyclic aromatic hydrocarbons on harbor sediment particles[J]. Environ Sci Technol, 2000, 34: 1729-1736
    [15] Gao J P, Maguhn J, Spitzauer P, et al. Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: Equilibrium assessments, effect of organic carbon content and pH[J]. Water Res, 1998, 32(5): 1662-1672
    [16] Pierard C, Budzinski H, Garrigues P. Grain-size distribution of polychloribiphenyls in coastal sediments[J]. Environ Sci Technol, 1996, 30: 2776-2783
    [17] Piatt J J, Backhus D A, Capel P D. Temperature-dependent sorption of naphthalene, phenanthrene and pyrone to low organic carbon aquifer sediments[J]. Environ Sci Technol, 1996, 3: 751-760
    [18] Cornelissen C, van Noort P C M, Parsons J R, et al. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments[J]. Environ Sci Technol, 1997, 31: 454-460
    [19] Tremblay L, Kohl S D, Rice J L, et al. Effects of temperature, salinity, and dissolved substance on the sorption of polycyclic aromatic hydrocarbons to estuarine particles[J]. Mar Chem, 2005, 96: 21-34
    [20] Bergen B J., Nelson W G, Pruell R J. Partitioning of polychlorinated biphenyls congeners in the seawater of new Bedford harbor, Massachusetts[J]. Environ Sci Technol, 1993, 27(5): 938-942
    [21] Jacobsen B N, Arvin E, Reinders M. Factors affecting sorption of pentachlorophenol to suspended microbial biomass[J]. Water Res, 1996, 30: 13-20
    [22] Behrends T, Herrmann R. Partitioning studies of anthracene on silica in the presence of a cationic surfactant: dependency on pH and ionic strength[J]. Physical Chemical Earth, 1998, 23(2):229-235
    [23] Robertson A P, Leckie J O. Cation binding predictions of surface complexation models: effects of pH, ionic strength, cation loading, surface complex and model fit[J]. J Colloid Interf Sci, 1997, 188: 444-472
    [24] Stapleton M G, Sparks D L, Dentel S K. Sorption of pentachlorophenol to HDTMA-clay as a function of ionic strength and pH[J]. Environ Sci Technol, 1994, 28: 2330-2335
    [25] 罗雪梅,刘昌明. 离子强度对土壤与沉积物吸附多环芳烃的影响研究[J]. 生态环境,2006, 15:983-987
    [26] Nkedi-kizza P, Rao P S C, Hornsby A G. Influence of organic cosolvents on leaching of hydrophobic organic chemicals through soils[J]. Environ Sci Technol, 1987, 21: 1107-1114
    [27] Walter J, Weber W J J. Distributed reactivity model for sorption by soils and sediments: 15. High-concentration co-contaminant effects on phenanthrene sorption and desorption[J]. Environ Sci Technol, 2002, 36: 3625-3634
    [28] 陈宝梁,朱利中,陶澍. 非离子表面活性剂对菲在水/土壤界面间吸附行为的影响[J]. 环境科学学报, 2003, 23(1):1-5
    [29] 朱利中,马荻荻,陈宝梁. 双阳离子有机膨润土对菲的吸附性能及机理研究[J]. 环境化学,2000, 19(3): 256-261
    [30] Valsaraj K T, Verma S, Sojitra I, et al. Diffusive transport of organic colloids from sediment beds[J]. J Environ Eng, 1996, 8: 722-729
    [31] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments[J]. Wat Res, 1979, 13: 241-248
    [32] Gao J P, Maguhn J, Spitzauer P, et al. Distribution of pesticides in the sediment of the small Teufelsweiher pond (Southern Germany)[J]. Wat Res, 1996, 31: 2811-2819
    [33] Burgess R M, Mckinney R A, Brown W A. Enrichment of marine sediment colloids with polychlorinated biphenyls: Trends resulting from PCB solubility and chlorination[J]. Environ Sci Technol, 1996, 30(8): 2556-2566
    [34] Gschwend P M, Wu S. On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants[J]. Environ Sci Technol, 1985, 19: 90-96
    [35] Achman D R, Brownawell B J, Zhang L. Exchange of polychlorinated biphenyls between sediment and water in the Hudson River estuary[J]. Estuaries, 1996, 19: 950-965
    [36] Garrad P N, Hey R D. Boat traffic, sediment resuspension and turbidity in a Broadland river[J]. J Hydrol, 1987, 95: 289-297
    [37] Nedohin D N, Elefsiniotis P. The effects of motorboats on water quality in shallow lakes[J]. Toxicol Environ, 1997, 61(1/4): 127-133
    [38] Yousef Y A, McLellon W M, Zebuth H H. Changes in phosphorus concentrations due to mixing by motorboats in shallow lakes[J]. Water Res, 1980, 14: 841-852
    [39] 秦伯强,胡维平,高光,等. 太湖沉积物悬浮的动力机制及内源释放的概念性模式[J]. 科学通报,2003, 48: 1822-1831
    [40] Latimer J S, Davis W R, Keith D J. Mobilization of PAHs and PCBs from in-place contaminated marine resuspension events[J]. Estuar Coast Shelf Sci, 1999, 49: 577-599
    [41] Alkhatib E, Weigand C. Parameters affecting partitioning of 6 PCB congeners in natural sediments[J]. Environ Monit Assess, 2002, 78: 1-17
    [42] McNeil J, Taylor C, Lick W. Measurement of the erosion of undisturbed bottom sediments with depth[J]. J Hydraul Eng, 1996, 122: 316-324
    [43] Roberts J, Jepsen R, Gotthard D, et al. Effects of particle size and bulk density on erosion of quartz particles[J]. J Hydraul Eng, 1998, 124: 1261-1267
    [44] Lick W, McNeil J. Effects of sediment bulk properties on erosion rates[J]. Sci Total Environ, 2001, 266: 41-48
    [45] Schaanning M, Breyholtz B, Skei J. Experimental results on effects of capping on fluxes of persistent organic pollutants (POPs) from historically contaminated sediments[J]. Mar Chem, 2006, 102: 46-59
    [46] Menone M L, Miglioranza K S B, Iribarne O, et al. The role of burrowing beds and burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping organochlorine pesticides[J]. Mar Poll Bull, 2004, 48: 240-247
    [47] Mortimer R J G, Davey J T, Krom M D. The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber estuary[J]. Estuar Coast Shelf Sci, 1999, 48: 683-699
    [48] 陈天亿,刘 孜. 摇蚊虫对底泥中氮、磷释放作用的研究[J]. 昆虫学报,1995, 38: 448-451
    [49] Ciuta A, Gerino M, Boudou A. Remobilization and bioavailability of cadmium from historically contaminated sediments: Influence of bioturbation by tubificids[J]. Ecotox Environ Safe, 2007, 68: 108-117
    [50] Duport E, Stora G, Tremblay P, et al. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776[J]. J Exp Mar Bio Ecol, 2006, 336: 33-41
    [51] Hedman J E, Tocca J S, Gunnarsson J S. Remobilization of polychlorinated biphenyl from Baltic Sea sediment: Comparing the roles of bioturbation and physical resuspension[J]. Environ Toxicol Chem, 2009, 28: 2241-2249
    [52] Filip J, Bernard B P, Jack J. Modeling reactive transport in sediments subject to bioturbation and compaction[J]. Geochim Cosmochim Acta, 2005, 69: 3601-3617
    [53] Kortstee G J J, Appeldoorn K J, Bonting C F C, et al. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal[J]. FEMS Microbiol Rev, 1994,15: 137-153
    [54] 王晓蓉,华兆哲,徐菱,等. 环境条件变化对太湖沉积物磷释放的影响[J]. 环境化学,1996, 15(1): 15-19
    [55] 孙晓杭,张 昱, 张斌亮,等. 微生物作用对太湖沉积物磷释放影响的模拟实验研究[J]. 环境化学,2006, 25(1): 24-27
  • 加载中
计量
  • 文章访问数:  1401
  • HTML全文浏览数:  1345
  • PDF下载数:  725
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-05-27
戴国华, 刘新会. 影响沉积物-水界面持久性有机污染物迁移行为的因素研究[J]. 环境化学, 2011, 30(1): 224-230.
引用本文: 戴国华, 刘新会. 影响沉积物-水界面持久性有机污染物迁移行为的因素研究[J]. 环境化学, 2011, 30(1): 224-230.
DAI Guohua, LIU Xinhui. FACTORS AFFACTING THE MIGRATION OF PERSISTENT ORGANIC POLLUTANTS ACROSS THE SEDIMENT-WATER INTERFACE OF AQUATIC ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 224-230.
Citation: DAI Guohua, LIU Xinhui. FACTORS AFFACTING THE MIGRATION OF PERSISTENT ORGANIC POLLUTANTS ACROSS THE SEDIMENT-WATER INTERFACE OF AQUATIC ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 224-230.

影响沉积物-水界面持久性有机污染物迁移行为的因素研究

  • 1. 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京, 100875
基金项目:

国家自然科学基金面上项目 (40871218)资助.

摘要: 沉积物-水界面是自然水体在物理、化学和生物特征等方面差异性最显著的环境边界,界面及附近发生的物理和化学反应,如吸附和解吸、迁移和转化、扩散和掩埋以及生物扰动等作用是控制和调节水体和沉积物之间物质输送和交换的重要途径.持久性有机污染物由于其具有致癌、致畸、致突变及内分泌干扰作用而受到人们的广泛关注,它们在沉积物-水界面的迁移行为决定了其对环境和人类的潜在威胁.本文综述了影响持久性有机污染物在沉积物-水界面迁移行为的诸多因素,包括环境因子和动力学因素,并对当前研究中存在的问题及今后需加强的研究领域提出了建议.

English Abstract

参考文献 (55)

返回顶部

目录

/

返回文章
返回