环境内分泌干扰物质的健康影响与作用机制

时国庆, 李栋, 卢晓珅, 王海鸥, 刘丽琴, 魏巍, 宣劲松. 环境内分泌干扰物质的健康影响与作用机制[J]. 环境化学, 2011, 30(1): 211-223.
引用本文: 时国庆, 李栋, 卢晓珅, 王海鸥, 刘丽琴, 魏巍, 宣劲松. 环境内分泌干扰物质的健康影响与作用机制[J]. 环境化学, 2011, 30(1): 211-223.
SHI Guoqing, LI Dong, LU Xiaoshen, WANG Haiou, LIU Liqin, WEI Wei, XUAN Jinsong. THE HEALTH EFFECTS AND RELATED MECHANISM OF ENVIRONMENTAL ENDOCRINE DISRUPTORS[J]. Environmental Chemistry, 2011, 30(1): 211-223.
Citation: SHI Guoqing, LI Dong, LU Xiaoshen, WANG Haiou, LIU Liqin, WEI Wei, XUAN Jinsong. THE HEALTH EFFECTS AND RELATED MECHANISM OF ENVIRONMENTAL ENDOCRINE DISRUPTORS[J]. Environmental Chemistry, 2011, 30(1): 211-223.

环境内分泌干扰物质的健康影响与作用机制

  • 基金项目:

    国家自然科学基金(20977007)

    中央高校基本科研业务费专项资金(FRF-BF-09-008A)资助.

THE HEALTH EFFECTS AND RELATED MECHANISM OF ENVIRONMENTAL ENDOCRINE DISRUPTORS

  • Fund Project:
  • 摘要: 本文综述了环境内分泌干扰物质与人或动物生殖发育、行为智力、免疫功能、肥胖、糖尿病、癌症等异常或疾病的相关性及相关作用机制,讨论了其"低剂量效应"和"复合效应",对本领域今后发展的方向进行了探讨.
  • 加载中
  • [1] 周庆祥,江桂斌. 浅谈环境内分泌干扰物质[J]. 科技术语研究, 2001, 3(3): 12-14
    [2] Dodds E C, Lawson W. Synthetic estrogenic agents without the phenanthrene nucleus[J]. Nature, 1936, 137: 996
    [3] Dumanoski D, Myers J P, Colborn T. Our stolen future:are we threatening our fertility, intelligence, and survival? A scientific detective story[M]. New York:Dutton, 1996: 306
    [4] Colborn T, Clement C. Chemically-induced alterations in sexual and functional developmentthe wildlife/human connection[M]. Princeton, N.J. Princeton Scientific Pub Co, 1992: 403
    [5] 时国庆,江桂斌. 环境内分泌干扰物.//环境化学进展[M]. 北京: 化学工业出版社, 2005: 346-363
    [6] Hotchkiss A K, Rider C V, Blystone C R, et al. Fifteen years after "Wingspread"Environmental endocrine disrupters and human and wildlife health: Where we are today and where we need to go[J]. Toxicol Sci, 2008, 105(2): 235-259
    [7] Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement[J]. Endocr Rev, 2009, 30(4): 293-342
    [8] Meeker J D. Exposure to environmental endocrine disrupting compounds and men's health[J]. Maturitas, 2010, 66(3): 236-241
    [9] Sax L. Polyethylene terephthalate may yield endocrine disruptors[J]. Environ Health Perspect, 2010, 118(4): 445-448
    [10] Vasami R. Polyethylene terephthalate and endocrine disruptors[J]. Environ Health Perspect, 2010, 118(5): A196-A197, A197
    [11] Barrett J R. ENDOCRINE DISRUPTORS: Estrogens in a bottle?[J]. Environ Health Perspect, 2009, 117(6): A241
    [12] Herbst A L, Ulfelder H, Poskanzer D C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women[J]. N Engl J Med, 1971, 284(15): 878-881
    [13] Stillman R J. In utero exposure to diethylstilbestrol: adverse effects on the reproductive tract and reproductive performance and male and female offspring[J]. Am J Obstet Gynecol, 1982, 142(7): 905-921
    [14] Vandenberg L N, Hauser R, Marcus M, et al. Human exposure to bisphenol A (BPA)[J]. Reprod Toxicol, 2007, 24(2): 139-177
    [15] Nam S H, Seo Y M, Kim M G. Bisphenol A migration from polycarbonate baby bottle with repeated use[J]. Chemosphere, 2010, 79(9): 949-952
    [16] Krishnan A V, Stathis P, Permuth S F, et al. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving[J]. Endocrinology, 1993, 132(6): 2279-2286
    [17] Nagel S C, Vom S F, Thayer K A, et al. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol[J]. Environ Health Perspect, 1997, 105(1): 70-76
    [18] Takai Y, Tsutsumi O, Ikezuki Y, et al. Estrogen receptor-mediated effects of a xenoestrogen, bisphenol A, on preimplantation mouse embryos[J]. Biochem Biophys Res Commun, 2000, 270(3): 918-921
    [19] Markey C M, Luque E H, Munoz D T M, et al. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland[J]. Biol Reprod, 2001, 65(4): 1215-1223
    [20] Nagao T, Saito Y, Usumi K, et al. Low-dose bisphenol A does not affect reproductive organs in estrogen-sensitive C57BL/6N mice exposed at the sexually mature, juvenile, or embryonic stage[J]. Reprod Toxicol, 2002, 16(2): 123-130
    [21] Schonfelder G, Friedrich K, Paul M, et al. Developmental effects of prenatal exposure to bisphenol a on the uterus of rat offspring[J]. Neoplasia, 2004, 6(5): 584-594
    [22] Markey C M, Wadia P R, Rubin B S, et al. Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract[J]. Biol Reprod, 2005, 72(6): 1344-1351
    [23] Maffini M V, Rubin B S, Sonnenschein C, et al. Endocrine disruptors and reproductive health: the case of bisphenol-A[J]. Mol Cell Endocrinol, 2006: 254-255, 179-186
    [24] Ryan B C, Hotchkiss A K, Crofton K M, et al. In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats[J]. Toxicol Sci, 2010, 114(1): 133-148
    [25] Vandenberg L N, Maffini M V, Wadia P R, et al. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland[J]. Endocrinology, 2007, 148(1): 116-127
    [26] NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A[M].NIH Publication No. 08-5994, September 2008
    [27] Vom S F, Akingbemi B T, Belcher S M, et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure[J]. Reprod Toxicol, 2007, 24(2): 131-138
    [28] Myers J P, Vom S F, Akingbemi B T, et al. Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A[J]. Environ Health Perspect, 2009, 117(3): 309-315
    [29] Mok-Lin E, Ehrlich S, Williams P L, et al. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF[J]. Int J Androl, 2010, 33(2): 385-393
    [30] Meeker J D, Calafat A M, Hauser R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic[J]. Environ Sci Technol, 2010, 44(4): 1458-1463
    [31] Meeker J D, Ehrlich S, Toth T L, et al. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic[J]. Reprod Toxicol, 2010, doi:10.1016/j. reprotox. 2010.07.005
    [32] Li D, Zhou Z, Qing D, et al. Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction[J]. Hum Reprod, 2010, 25(2): 519-527
    [33] Mendiola J, Jorgensen N, Andersson A M, et al. Are environmental levels of bisphenol A associated with reproductive function in fertile men?[J]. Environ Health Perspect, 2010, doi:10.1289/ehp.1002037
    [34] Tanaka M, Kawamoto T, Matsumoto H. Distribution of 14C-bisphenol A in pregnant and newborn mice[J]. Dent Mater, 2010, 26(6): e181-e187
    [35] Doerge D R, Twaddle N C, Vanlandingham M, et al. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats[J]. Toxicol Appl Pharmacol, 2010, doi:10.1016/j. taap.2010.06.008
    [36] Edginton A N, Ritter L. Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feeding schedules, using a physiologically based toxicokinetic model[J]. Environ Health Perspect, 2009, 117(4): 645-652
    [37] Mielke H, Gundert-Remy U. Bisphenol A levels in blood depend on age and exposure[J]. Toxicol Lett, 2009, 190(1): 32-40
    [38] Nishikawa M, Iwano H, Yanagisawa R, et al. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus[J]. Environ Health Perspect, 2010, doi: 10.1289/ehp.0901575
    [39] Balakrishnan B, Henare K, Thorstensen E B, et al. Transfer of bisphenol A across the human placenta[J]. Am J Obstet Gynecol, 2010, 202(4): 391-393
    [40] Kurebayashi H, Okudaira K, Ohno Y. Species difference of metabolic clearance of bisphenol A using cryopreserved hepatocytes from rats, monkeys and humans[J]. Toxicol Lett, 2010, doi:10.1016/j.toxlet.2010.06.017
    [41] Huang P C, Kuo P L, Chou Y Y, et al. Association between prenatal exposure to phthalates and the health of newborns[J]. Environ Int, 2009, 35(1): 14-20
    [42] Swan S H. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans[J]. Environ Res, 2008, 108(2): 177-184
    [43] Duty S M, Silva M J, Barr D B, et al. Phthalate exposure and human semen parameters[J]. Epidemiology, 2003, 14(3): 269-277
    [44] Duty S M, Singh N P, Silva M J, et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay[J]. Environ Health Perspect, 2003, 111(9): 1164-1169
    [45] Swan S H, Main K M, Liu F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure[J]. Environ Health Perspect, 2005, 113(8): 1056-1061
    [46] Main K M, Mortensen G K, Kaleva M M, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age[J]. Environ Health Perspect, 2006, 114(2): 270-276
    [47] Wolff M S, Teitelbaum S L, Pinney S M, et al. Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls[J]. Environ Health Perspect, 2010, 118(7): 1039-1046
    [48] Jacobson S W, Fein G G, Jacobson J L, et al. The effect of intrauterine PCB exposure on visual recognition memory[J]. Child Dev, 1985, 56(4): 853-860
    [49] Jacobson J L, Et A. Prenatal exposure to environmental toxin: A test of the multiple effects model[J]. Developmental Psychology, 1984, 20(4): 523-532
    [50] Walkowiak J, Wiener J A, Fastabend A, et al. Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood[J]. Lancet, 2001, 358(9293): 1602-1607
    [51] Jacobson J L, Jacobson S W. Prenatal exposure to polychlorinated biphenyls and attention at school age[J]. J Pediatr, 2003, 143(6): 780-788
    [52] Sagiv S K, Nugent J K, Brazelton T B, et al. Prenatal organochlorine exposure and measures of behavior in infancy using the Neonatal Behavioral Assessment Scale (NBAS)[J]. Environ Health Perspect, 2008, 116(5): 666-673
    [53] Wilhelm M, Ranft U, Kramer U, et al. Lack of neurodevelopmental adversity by prenatal exposure of infants to current lowered PCB levels: comparison of two German birth cohort studies[J]. J Toxicol Environ Health A, 2008, 71(11/12): 700-702
    [54] Verner M A, Plusquellec P, Muckle G, et al. Alteration of infant attention and activity by polychlorinated biphenyls: Unravelling critical windows of susceptibility using physiologically based pharmacokinetic modeling[J]. Neurotoxicology, 2010,31(5): 424-431
    [55] Mckinney J D, Chae K, Oatley S J, et al. Molecular interactions of toxic chlorinated dibenzo-p-dioxins and dibenzofurans with thyroxine binding prealbumin[J]. J Med Chem, 1985, 28(3): 375-381
    [56] Koopman-Esseboom C, Morse D C, Weisglas-Kuperus N, et al. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants[J]. Pediatr Res, 1994, 36(4): 468-473
    [57] Radikova Z, Tajtakova M, Kocan A, et al. Possible effects of environmental nitrates and toxic organochlorines on human thyroid in highly polluted areas in Slovakia[J]. Thyroid, 2008, 18(3): 353-362
    [58] Zhang J, Jiang Y, Zhou J, et al. Elevated body burdens of PBDEs, dioxins, and PCBs on thyroid hormone homeostasis at an electronic waste recycling site in China[J]. Environ Sci Technol, 2010, 44(10): 3956-3962
    [59] Matsuura N, Uchiyama T, Tada H, et al. Effects of dioxins and polychlorinated biphenyls (PCBs) on thyroid function in infants born in Japanthe second report from research on environmental health[J]. Chemosphere, 2001, 45(8): 1167-1171
    [60] Dallaire R, Muckle G, Dewailly E, et al. Thyroid hormone levels of pregnant inuit women and their infants exposed to environmental contaminants[J]. Environ Health Perspect, 2009, 117(6): 1014-1020
    [61] Schwarz J M, Mccarthy M M. Steroid-induced sexual differentiation of the developing brain: multiple pathways, one goal[J]. J Neurochem, 2008, 105(5): 1561-1572
    [62] Bakker J, Baum M J. Role for estradiol in female-typical brain and behavioral sexual differentiation[J]. Front Neuroendocrinol, 2008, 29(1): 1-16
    [63] Tian Y H, Baek J H, Lee S Y, et al. Prenatal and postnatal exposure to bisphenol A induces anxiolytic behaviors and cognitive deficits in mice[J]. Synapse, 2010, 64(6): 432-439
    [64] Xu X H, Zhang J, Wang Y M, et al. Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-D-aspartate receptors of hippocampus in male offspring mice[J]. Horm Behav, 2010, 58(2): 326-333
    [65] Hoffmann F, Kloas W. An environmentally relevant endocrine-disrupting antiandrogen, vinclozolin, affects calling behavior of male Xenopus laevis[J]. Horm Behav, 2010, doi:10.1016/j.yhbeh.2010.06.008
    [66] Faass O, Schlumpf M, Reolon S, et al. Female sexual behavior, estrous cycle and gene expression in sexually dimorphic brain regions after pre- and postnatal exposure to endocrine active UV filters[J]. Neurotoxicology, 2009, 30(2): 249-260
    [67] Youn J Y, Park H Y, Lee J W, et al. Evaluation of the immune response following exposure of mice to bisphenol A: induction of Th1 cytokine and prolactin by BPA exposure in the mouse spleen cells[J]. Arch Pharm Res, 2002, 25(6): 946-953
    [68] Lee M H, Chung S W, Kang B Y, et al. Enhanced interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor-AT and Ca2+[J]. Immunology, 2003, 109(1): 76-86
    [69] Yoshino S, Yamaki K, Li X, et al. Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice[J]. Immunology, 2004, 112(3): 489-495
    [70] Yang M, Lee H S, Pyo M Y. Proteomic biomarkers for prenatal bisphenol A-exposure in mouse immune organs[J]. Environ Mol Mutagen, 2008, 49(5): 368-373
    [71] Alizadeh M, Ota F, Hosoi K, et al. Altered allergic cytokine and antibody response in mice treated with bisphenol A[J]. J Med Invest, 2006, 53(1/2): 70-80
    [72] Calemine J, Zalenka J, Karpuzoglu-Sahin E, et al. The immune system of geriatric mice is modulated by estrogenic endocrine disruptors (diethylstilbestrol, alpha-zearalanol, and genistein): effects on interferon-gamma[J]. Toxicology, 2003, 194(1/2): 115-128
    [73] Jin Y, Chen R, Liu W, et al. Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio)[J]. Fish Shellfish Immunol, 2010, 28(5/6): 854-861
    [74] Lee D H, Jacobs D R, Kocher T. Associations of serum concentrations of persistent organic pollutants with the prevalence of periodontal disease and subpopulations of white blood cells[J]. Environ Health Perspect, 2008, 116(11): 1558-1562
    [75] Shaw J E, Sicree R A, Zimmet P Z. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract, 2010, 87(1): 4-14
    [76] Wasan K M, Looije N A. Emerging pharmacological approaches to the treatment of obesity[J]. J Pharm Pharm Sci, 2005, 8(2): 259-271
    [77] Chen J Q, Brown T R, Russo J. Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors[J]. Biochim Biophys Acta, 2009, 1793(7): 1128-1143
    [78] Rubin B S, Soto A M. Bisphenol A: Perinatal exposure and body weight[J]. Mol Cell Endocrinol, 2009, 304(1/2): 55-62
    [79] Nadal A, Alonso-Magdalena P, Soriano S, et al. The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes[J]. Mol Cell Endocrinol, 2009, 304(1/2): 63-68
    [80] Wade G N, Powers J B. Tamoxifen antagonizes the effects of estradiol on energy balance and estrous behavior in Syrian hamsters[J]. Am J Physiol, 1993, 265(3 Pt 2): R559-R562
    [81] Heine P A, Taylor J A, Iwamoto G A, et al. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice[J]. Proc Natl Acad Sci U S A, 2000, 97(23): 12729-12734
    [82] Demir B, Ozturkoglu E, Solaroglu A, et al. The effects of estrogen therapy and estrogen combined with different androgenic progestins on carbohydrate and lipid metabolism in overweight-obese younger postmenopausal women[J]. Gynecol Endocrinol, 2008, 24(6): 347-353
    [83] Howdeshell K L, Hotchkiss A K, Thayer K A, et al. Exposure to bisphenol A advances puberty[J]. Nature, 1999, 401(6755): 763-764
    [84] Alonso-Magdalena P, Vieira E, Soriano S, et al. Bisphenol-A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring[J]. Environ Health Perspect, 2010,doi:10.1289/ehp.1001993
    [85] Somm E, Schwitzgebel V M, Toulotte A, et al. Perinatal exposure to bisphenol a alters early adipogenesis in the rat[J]. Environ Health Perspect, 2009, 117(10): 1549-1555
    [86] Lang I A, Galloway T S, Scarlett A, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults[J]. JAMA, 2008, 300(11): 1303-1310
    [87] Lee M J, Lin H, Liu C W, et al. Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways[J]. Am J Physiol Cell Physiol, 2008, 294(6): C1542-C1551
    [88] Hoppe A A, Carey G B. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism[J]. Obesity (Silver Spring), 2007, 15(12): 2942-2950
    [89] Alonso-Magdalena P, Ropero A B, Carrera M P, et al. Pancreatic insulin content regulation by the estrogen receptor ER alpha[J]. PLoS One, 2008, 3(4): e2069
    [90] Adachi T, Yasuda K, Mori C, et al. Promoting insulin secretion in pancreatic islets by means of bisphenol A and nonylphenol via intracellular estrogen receptors[J]. Food Chem Toxicol, 2005, 43(5): 713-719
    [91] Alonso-Magdalena P, Morimoto S, Ripoll C, et al. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance[J]. Environ Health Perspect, 2006, 114(1): 106-112
    [92] Lee D H, Lee I K, Song K, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999—2002[J]. Diabetes Care, 2006, 29(7): 1638-1644
    [93] Sato S, Shirakawa H, Tomita S, et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver[J]. Toxicol Appl Pharmacol, 2008, 229(1): 10-19
    [94] Sugden M C, Holness M J. Role of nuclear receptors in the modulation of insulin secretion in lipid-induced insulin resistance[J]. Biochem Soc Trans, 2008, 36(Pt 5): 891-900
    [95] Desvergne B, Feige J N, Casals-Casas C. PPAR-mediated activity of phthalates: A link to the obesity epidemic?[J]. Mol Cell Endocrinol, 2009, 304(1/2): 43-48
    [96] Hines E P, White S S, Stanko J P, et al. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: Low doses induce elevated serum leptin and insulin, and overweight in mid-life[J]. Mol Cell Endocrinol, 2009, 304(1/2): 97-105
    [97] Grun F, Watanabe H, Zamanian Z, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates[J]. Mol Endocrinol, 2006, 20(9): 2141-2155
    [98] Prins G S. Endocrine disruptors and prostate cancer risk[J]. Endocr Relat Cancer, 2008, 15(3): 649-656
    [99] Soto A M, Sonnenschein C. Environmental causes of cancer: endocrine disruptors as carcinogens[J]. Nat Rev Endocrinol, 2010, 6(7): 363-370
    [100] Salehi F, Turner M C, Phillips K P, et al. Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors[J]. J Toxicol Environ Health B Crit Rev, 2008, 11(3/4): 276-300
    [101] Hahn W C, Weinberg R A. Modelling the molecular circuitry of cancer[J]. Nat Rev Cancer, 2002, 2(5): 331-341
    [102] Sonnenschein C, Soto A M. Theories of carcinogenesis: an emerging perspective[J]. Semin Cancer Biol, 2008, 18(5): 372-377
    [103] Maffini M V, Calabro J M, Soto A M, et al. Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma[J]. Am J Pathol, 2005, 167(5): 1405-1410
    [104] Herbst A L, Ulfelder H, Poskanzer D C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women[J]. N Engl J Med, 1971, 284(15): 878-881
    [105] Forsberg J G. Physiological mechanisms of diethylstilbestrol organotropic carcinogenesis[J]. Arch Toxicol Suppl, 1979(2): 263-274
    [106] Digiovanni J, Viaje A, Berry D L, et al. Tumor-initiating ability of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and Arochlor 1254 in the two-stage system of mouse skin carcinogenesis[J]. Bull Environ Contam Toxicol, 1977, 18(5): 552-557
    [107] Mills J J, Andersen M E. Dioxin hepatic carcinogenesis: biologically motivated modeling and risk assessment[J]. Toxicol Lett, 1993, 68(1/2): 177-189
    [108] NTP Toxicology and Carcinogenesis Studies of a Mixture of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) (CAS No. 1746-01-6), 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) (CAS No. 57117-31-4), and 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) in Female Harlan Sprague-Dawley Rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser, 2006(526): 1-180
    [109] Demby K B, Lucier G W. Receptor-mediated carcinogenesis: the role of biological effect modeling for risk assessment of dioxin and tamoxifen[J]. Prog Clin Biol Res, 1996, 394: 113-129
    [110] Durando M, Kass L, Piva J, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats[J]. Environ Health Perspect, 2007, 115(1): 80-86
    [111] Betancourt A M, Eltoum I A, Desmond R A, et al. In utero exposure to bisphenol A shifts the window of susceptibility for mammary carcinogenesis in the rat[J]. Environ Health Perspect, 2010,doi:10.1289/ehp.1002148
    [112] Raghow S, Hooshdaran M Z, Katiyar S, et al. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model[J]. Cancer Res, 2002, 62(5): 1370-1376
    [113] Vom S F, Timms B G, Montano M M, et al. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses[J]. Proc Natl Acad Sci U S A, 1997, 94(5): 2056-2061
    [114] Keri R A, Ho S M, Hunt P A, et al. An evaluation of evidence for the carcinogenic activity of bisphenol A[J]. Reprod Toxicol, 2007, 24(2): 240-252
    [115] Parent M E, Siemiatycki J. Occupation and prostate cancer[J]. Epidemiol Rev, 2001, 23(1): 138-143
    [116] Van Maele-Fabry G, Willems J L. Occupation related pesticide exposure and cancer of the prostate: a meta-analysis[J]. Occup Environ Med, 2003, 60(9): 634-642
    [117] Hardell L, Andersson S O, Carlberg M, et al. Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer[J]. J Occup Environ Med, 2006, 48(7): 700-707
    [118] Walvekar R R, Kane S V, Nadkarni M S, et al. Chronic arsenic poisoning: a global health issue a report of multiple primary cancers[J]. J Cutan Pathol, 2007, 34(2): 203-206
    [119] Melnick R, Lucier G, Wolfe M, et al. Summary of the national toxicology program's report of the endocrine disruptors low-dose peer review[J]. Environ Health Perspect, 2002, 110(4): 427-431
    [120] Nagel S C, Vom S F, Thayer K A, et al. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol[J]. Environ Health Perspect, 1997, 105(1): 70-76
    [121] Vom S F, Cooke P S, Buchanan D L, et al. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior[J]. Toxicol Ind Health, 1998, 14(1/2): 239-260
    [122] Schonfelder G, Friedrich K, Paul M, et al. Developmental effects of prenatal exposure to bisphenol A on the uterus of rat offspring[J]. Neoplasia, 2004, 6(5): 584-594
    [123] Gioiosa L, Fissore E, Ghirardelli G, et al. Developmental exposure to low-dose estrogenic endocrine disruptors alters sex differences in exploration and emotional responses in mice[J]. Horm Behav, 2007, 52(3): 307-316
    [124] Varayoud J, Ramos J G, Bosquiazzo V L, et al. Developmental exposure to bisphenol A impairs the uterine response to ovarian steroids in the adult[J]. Endocrinology, 2008, 149(11): 5848-5860
    [125] Hayes T B, Collins A, Lee M, et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses[J]. Proc Natl Acad Sci U S A, 2002, 99(8): 5476-5480
    [126] Hayes T, Haston K, Tsui M, et al. Herbicides: feminization of male frogs in the wild[J]. Nature, 2002, 419(6910): 895-896
    [127] Hayes T, Haston K, Tsui M, et al. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence[J]. Environ Health Perspect, 2003, 111(4): 568-575
    [128] Markowski V P, Zareba G, Stern S, et al. Altered operant responding for motor reinforcement and the determination of benchmark doses following perinatal exposure to low-level 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Environ Health Perspect, 2001, 109(6): 621-627
    [129] Cavieres M F, Jaeger J, Porter W. Developmental toxicity of a commercial herbicide mixture in mice: I. Effects on embryo implantation and litter size[J]. Environ Health Perspect, 2002, 110(11): 1081-1085
    [130] Ulrich E M, Caperell-Grant A, Jung S H, et al. Environmentally relevant xenoestrogen tissue concentrations correlated to biological responses in mice[J]. Environ Health Perspect, 2000, 108(10): 973-977
    [131] Ashby J, Tinwell H, Haseman J. Lack of effects for low dose levels of bisphenol A and diethylstilbestrol on the prostate gland of CF1 mice exposed in utero[J]. Regul Toxicol Pharmacol, 1999, 30(2 Pt 1): 156-166
    [132] Cagen S Z, Waechter J J, Dimond S S, et al. Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol A[J]. Toxicol Sci, 1999, 50(1): 36-44
    [133] Welshons W V, Thayer K A, Judy B M, et al. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity[J]. Environ Health Perspect, 2003, 111(8): 994-1006
    [134] Sekizawa J. Low-dose effects of bisphenol A: a serious threat to human health?[J]. J Toxicol Sci, 2008, 33(4): 389-403
    [135] Bromer J G, Zhou Y, Taylor M B, et al. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response[J]. FASEB J, 2010, 24(7): 2273-2280
    [136] Vandenberg L N, Maffini M V, Sonnenschein C, et al. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption[J]. Endocr Rev, 2009, 30(1): 75-95
    [137] Hirabayashi Y, Inoue T. The low-dose issue and stochastic responses to endocrine disruptors[J]. J Appl Toxicol, 2010,doi:10.1002/jat.1571
    [138] Arnold S F, Klotz D M, Collins B M, et al. Synergistic activation of estrogen receptor with combinations of environmental chemicals[J]. Science, 1996, 272(5267): 1489-1492
    [139] Ashby J, Lefevre P A, Odum J, et al. Synergy between synthetic oestrogens?[J]. Nature, 1997, 385(6616): 494
    [140] Payne J, Rajapakse N, Wilkins M, et al. Prediction and assessment of the effects of mixtures of four xenoestrogens[J]. Environ Health Perspect, 2000, 108(10): 983-987
    [141] Silva E, Rajapakse N, Kortenkamp A. Something from "nothing"eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects[J]. Environ Sci Technol, 2002, 36(8): 1751-1756
    [142] Rajapakse N, Silva E, Kortenkamp A. Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action[J]. Environ Health Perspect, 2002, 110(9): 917-921
    [143] van Meeuwen J A, Ter Burg W, Piersma A H, et al. Mixture effects of estrogenic compounds on proliferation and pS2 expression of MCF-7 human breast cancer cells[J]. Food Chem Toxicol, 2007, 45(11): 2319-2330
    [144] Li D, Hu Y, Shen X, et al. Combined effects of two environmental endocrine disruptors nonyl phenol and di-n-butyl phthalate on rat sertoli cells in vitro[J]. Reprod Toxicol, 2010,doi:10.1016/j.reprotox.2010.06.003
    [145] Ohlsson S, Ulleras E, Cedergreen N, et al. Mixture effects of dietary flavonoids on steroid hormone synthesis in the human adrenocortical H295R cell line[J]. Food Chem Toxicol, 2010,doi:10.1016/j.fct.2010.08.021
    [146] Thorpe K L, Hutchinson T H, Hetheridge M J, et al. Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Environ Sci Technol, 2001, 35(12): 2476-2481
    [147] Brian J V, Harris C A, Scholze M, et al. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals[J]. Environ Health Perspect, 2005, 113(6): 721-728
    [148] Rajapakse N, Silva E, Scholze M, et al. Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tert-octylphenol detected in the E-SCREEN assay[J]. Environ Sci Technol, 2004, 38(23): 6343-6352
    [149] Kjaerstad M B, Taxvig C, Andersen H R, et al. Mixture effects of endocrine disrupting compounds in vitro[J]. Int J Androl, 2010, 33(2): 425-433
    [150] Merzenich H, Zeeb H, Blettner M. Decreasing sperm quality: a global problem?[J]. BMC Public Health, 2010, 10: 24
    [151] Vandenberg L N, Chauhoud I, Padmanabhan V, et al. Biomonitoring studies should be used by regulatory agencies to assess human exposure levels and safety of bisphenol A[J]. Environ Health Perspect, 2010,doi:10.1289/ehp.0901717
    [152] Breen M S, Breen M, Terasaki N, et al. Computational model of steroidogenesis in human H295R cells to predict biochemical response to endocrine-active chemicals: model development for metyrapone[J]. Environ Health Perspect, 2010, 118(2): 265-272
  • 加载中
计量
  • 文章访问数:  2567
  • HTML全文浏览数:  2432
  • PDF下载数:  719
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-09-01
时国庆, 李栋, 卢晓珅, 王海鸥, 刘丽琴, 魏巍, 宣劲松. 环境内分泌干扰物质的健康影响与作用机制[J]. 环境化学, 2011, 30(1): 211-223.
引用本文: 时国庆, 李栋, 卢晓珅, 王海鸥, 刘丽琴, 魏巍, 宣劲松. 环境内分泌干扰物质的健康影响与作用机制[J]. 环境化学, 2011, 30(1): 211-223.
SHI Guoqing, LI Dong, LU Xiaoshen, WANG Haiou, LIU Liqin, WEI Wei, XUAN Jinsong. THE HEALTH EFFECTS AND RELATED MECHANISM OF ENVIRONMENTAL ENDOCRINE DISRUPTORS[J]. Environmental Chemistry, 2011, 30(1): 211-223.
Citation: SHI Guoqing, LI Dong, LU Xiaoshen, WANG Haiou, LIU Liqin, WEI Wei, XUAN Jinsong. THE HEALTH EFFECTS AND RELATED MECHANISM OF ENVIRONMENTAL ENDOCRINE DISRUPTORS[J]. Environmental Chemistry, 2011, 30(1): 211-223.

环境内分泌干扰物质的健康影响与作用机制

  • 1. 北京科技大学化学与生物工程学院生物科学与工程系, 北京, 100083
基金项目:

国家自然科学基金(20977007)

中央高校基本科研业务费专项资金(FRF-BF-09-008A)资助.

摘要: 本文综述了环境内分泌干扰物质与人或动物生殖发育、行为智力、免疫功能、肥胖、糖尿病、癌症等异常或疾病的相关性及相关作用机制,讨论了其"低剂量效应"和"复合效应",对本领域今后发展的方向进行了探讨.

English Abstract

参考文献 (152)

返回顶部

目录

/

返回文章
返回