[1]
|
Smith D A, Schurig G G, Smith S A, et al. Tilapia (Oreochromis niloticus) and rodents exhibit similar patterns of inhibited antibody production following exposure to immunotoxic chemicals[J]. Vet Hum Toxicol, 1999, 41(6):368-373
|
[2]
|
Suh J, Jeon Y J, Kim H M, et al. Aryl hydrocarbon receptor-dependent inhibition of AP-1 activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin in activated B cells[J]. Toxicol Appl Pharmacol, 2002, 181:116-123
|
[3]
|
Ito T, Inouye K, Fujimaki H, et al. Mechanism of TCDD-induced suppression of antibody production:effect on T cell-derived cytokine production in the primary immune reaction of mice[J]. Toxicol Sci, 2002, 70(1):46-54
|
[4]
|
Crawford R B, Sulentic C E, Yoo B S, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the regulation and posttranslational modification of p27kip1 in lipopolysaccharide-activated B cells[J]. Toxicol Sci, 2003, 75(2):333-342
|
[5]
|
Nakano S, Takekoshi H, Nakano M. Chlorella (Chlorella pyrenoidosa) supplementation decreases dioxin and increases immunoglobulin a concentrations in breast milk[J]. J Med Food, 2007, 10(1):134-142
|
[6]
|
North C M, Kim B S, Snyder N, et al. TCDD-mediated suppression of the in vitro anti-sheep erythrocyte IgM antibody forming cell response is reversed by interferon-gamma[J]. Toxicol Sci, 2009, 107(1):85-92
|
[7]
|
Baccarelli A, Mocarelli P, Patterson D G Jr, et al. Immunologic effects of dioxin:new results from Seveso and comparison with other studies[J]. Environ Health Perspect, 2002, 110(12):1169-1173
|
[8]
|
Schneider D, Manzan M A, Crawford R B, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated impairment of B cell differentiation involves dysregulation of paired box 5 (Pax5) isoform, Pax5a[J]. J Pharmacol Exp Ther, 2008, 326(2):463-374
|
[9]
|
Schneider D, Manzan M A, Yoo BS, et al. Involvement of Blimp-1 and AP-1 dysregulation in the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of the IgM response by B cells[J]. Toxicol Sci, 2009, 108(2):377-388
|
[10]
|
Inouye K, Ito T, Fujimaki H, et al. Suppressive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the high-affinity antibody response in C57BL/6 mice[J]. Toxicol Sci, 2003, 74(2):315-324
|
[11]
|
Ruby C E, Leid M, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin suppresses tumor necrosis factor-alpha and anti-CD40-induced activation of NF-kappaB/Rel in dendritic cells:p50 homodimer activation is not affected[J]. Mol Pharmacol, 2002, 62(3):722-728
|
[12]
|
Lee J A, Hwang J A, Sung H N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates functional differentiation of mouse bone marrow-derived dendritic cells Downregulation of RelB by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Toxicol Lett, 2007, 173(1):31-40
|
[13]
|
Vorderstrasse B A, Dearstyne E A, Kerkvliet N I. Influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the antigen-presenting activity of dendritic cells[J]. Toxicol Sci, 2003, 72(1):103-112
|
[14]
|
Vogel C F, Goth S R, Dong B, et al. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase[J]. Biochem Biophys Res Commun, 2008, 375(3):331-335
|
[15]
|
Vorderstrasse B A, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin affects the number and function of murine splenic dendritic cells and their expression of accessory molecules[J]. Toxicol Appl Pharmacol, 2001, 171(2):117-125
|
[16]
|
Funatake C J, Dearstyne E A, Steppan L B, et al. Early consequences of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on the activation and survival of antigen-specific T cells[J]. Toxicol Sci, 2004, 82(1):129-142
|
[17]
|
Nagai H, Takei T, Tohyama C, et al. Search for the target genes involved in the suppression of antibody production by TCDD in C57BL/6 mice[J]. Int Immunopharmacol, 2005, 5(2):331-343
|
[18]
|
Ho-Jun K, Kang B N, Cho S W, et al. Effects of benzopyrene, 2-bromopropane, phenol and 2,3,7,8-tetrachlorodibenzo-p-dioxin on proinflammatory cytokines gene expression by mice spleen cells[J]. J Vet Sci, 2002, 3(4):247-254
|
[19]
|
Ishikawa S. Children's immunology, what can we learn from animal studies (3):Impaired mucosal immunity in the gut by 2,3,7,8-tetraclorodibenzo-p-dioxin (TCDD):a possible role for allergic sensitization[J]. J Toxicol Sci, 2009, 34:S349-361
|
[20]
|
Kerkvliet N I, Shepherd D M, Baecher-Steppan L. Tlymphocytes are direct, aryl hydrocarbon receptor (AhR)-dependent targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD):AhR expression in both CD4+ and CD8+ T cells is necessary for full suppression of a cytotoxic Tlymphocyte response by TCDD[J]. Toxicol Appl Pharmacol, 2002, 185(2):146-152
|
[21]
|
Funatake C J, Marshall N B, Steppan L B, et al. Cutting edge:activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells[J]. J Immunol, 2005, 175(7):4184-4188
|
[22]
|
Funatake C J, Marshall N B, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin alters the differentiation of alloreactive CD8+ T cells toward a regulatory T cell phenotype by a mechanism that is dependent on aryl hydrocarbon receptor in CD4+ T cells[J]. J Immunotoxicol, 2008, 5(1):81-91
|
[23]
|
Lai Z W, Fiore N C, Hahn P J, et al. Differential effects of diethylstilbestrol and 2,3,7,8-tetrachlorodibenzo-p-dioxin on thymocyte differentiation, proliferation, and apoptosis in bcl-2 transgenic mouse fetal thymus organ culture[J]. Toxicol Appl Pharmacol, 2000, 168(1):15-24
|
[24]
|
Laiosa M D, Wyman A, Murante F G, et al. Cell proliferation arrest within intrathymic lymphocyte progenitor cells causes thymic atrophy mediated by the aryl hydrocarbon receptor[J]. J Immunol, 2003, 171(9):4582-4591
|
[25]
|
Tomita S, Jiang H B, Ueno T, et al. T cell-specific disruption of arylhydrocarbon receptor nuclear translocator (Arnt) gene causes resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced thymic involution[J]. J Immunol, 2003, 171(8):4113-4120
|
[26]
|
Camacho I A, Singh N, Hegde V L, et al. Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells[J]. J Immunol, 2005, 175(1):90-103
|
[27]
|
Sugita-Konishi Y, Kobayashi K, Naito H, et al. Effect of lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on the susceptibility to Listeria infection[J]. Biosci Biotechnol Biochem, 2003, 67(1):89-93
|
[28]
|
Camacho I A, Nagarkatti M, Nagarkatti P S. Evidence for induction of apoptosis in T cells from murine fetal thymus following perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. Toxicol Sci, 2004, 78(1):96-106
|
[29]
|
Gogal RM Jr, Holladay S D. Perinatal TCDD exposure and the adult onset of autoimmune disease[J]. J Immunotoxicol, 2008, 5(4):413-418
|
[30]
|
Nagayama J, Tsuji H, Iida T, et al. Immunologic effects of perinatal exposure to dioxins, PCBs and organochlorine pesticides in Japanese infants[J]. Chemosphere, 2007, 67(9):S393-398
|
[31]
|
Esser C, Temchura V, Majora M, et al. Signaling via the AHR leads to enhanced usage of CD44v10 by murine fetal thymic emigrants:possible role for CD44 in emigration[J]. Int Immunopharmacol, 2004, 4(6):805-818
|
[32]
|
Temchura V V, Frericks M, Nacken W, et al. Role of the aryl hydrocarbon receptor in thymocyte emigration in vivo[J]. Eur J Immunol, 2005, 35(9):2738-2747
|
[33]
|
Majora M, Frericks M, Temchura V, et al. Detection of a novel population of fetal thymocytes characterized by preferential emigration and a TCRgammadelta+ T cell fate after dioxin exposure[J]. Int Immunopharmacol, 2005, 5(12):1659-1674
|
[34]
|
Kronenberg S, Lai Z, Esser C. Generation of alphabeta T-cell receptor+ CD4- CD8+ cells in major histocompatibility complex class I-deficient mice upon activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Immunology, 2000, 100(2):185-193
|
[35]
|
Fisher M T, Nagarkatti M, Nagarkatti P S. 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances negative selection of T cells in the thymus but allows autoreactive T cells to escape deletion and migrate to the periphery[J]. Mol Pharmacol, 2005, 67(1):327-335
|
[36]
|
Shepherd D M, Dearstyne E A, Kerkvliet N I. The effects of TCDD on the activation of ovalbumin (OVA)-specific DO11.10 transgenic CD4(+) T cells in adoptively transferred mice[J]. Toxicol Sci, 2000, 56(2):340-350
|
[37]
|
Zeytun A, McKallip R J, Fisher M, et al. Analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced gene expression profile in vivo using pathway-specific cDNA arrays[J]. Toxicology, 2002, 178(3):241-260
|
[38]
|
Camacho I A, Hassuneh M R, Nagarkatti M, et al. Enhanced activation-induced cell death as a mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity in peripheral T cells[J]. Toxicology, 2001, 165(1):51-63
|
[39]
|
Faulconer L, Camacho I, Nagarkatti M, et al. Superantigen-primed T cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) replicate poorly following recall encounter[J]. Arch Toxicol, 2006, 80(3):134-145
|
[40]
|
Singh N P, Nagarkatti M, Nagarkatti P. Primary peripheral T cells become susceptible to 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated apoptosis in vitro upon activation and in the presence of dendritic cells[J]. Mol Pharmacol, 2008, 73(6):1722-1735
|
[41]
|
Vogel C F, Sciullo E, Matsumura F. Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation[J]. Cardiovasc Toxicol, 2004, 4(4):363-373
|
[42]
|
Lecureur V, Ferrec E L, N'diaye M, et al. ERK-dependent induction of TNFalpha expression by the environmental contaminant benzo(a)pyrene in primary human macrophages[J]. FEBS Lett, 2005, 579(9):1904-1910
|
[43]
|
Sciullo E M, Dong B, Vogel C F, et al. Characterization of the pattern of the nongenomic signaling pathway through which TCDD-induces early inflammatory responses in U937 human macrophages[J]. Chemosphere, 2009, 74(11):1531-1537
|
[44]
|
Abrahams V M, Collins J E, Wira C R, et al. Inhibition of human polymorphonuclear cell oxidative burst by 17-beta-estradiol and 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Am J Reprod Immunol, 2003, 50(6):463-472
|
[45]
|
Quintana F J, Basso A S, Iglesias A H, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191):65-71
|
[46]
|
Veldhoen M, Hirota K, Westendorf A M, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins[J]. Nature, 2008, 453(7191):106-109
|
[47]
|
Mustafa A, Holladay S D, Goff M, et al. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD[J]. Toxicol Appl Pharmacol, 2008, 232(1):51-59
|
[48]
|
Ishimaru N, Takagi A, Kohashi M, et al. Neonatal exposure to low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin causes autoimmunity due to the disruption of T cell tolerance[J]. J Immunol, 2009, 182(10):6576-6586
|
[49]
|
Mustafa A, Holladay S D, Goff M, et al. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters postnatal T cell phenotypes and T cell function and exacerbates autoimmune lupus in 24-week-old SNF1 mice[J]. Birth Defects Res A Clin Mol Teratol, 2009, 85(10):828-836
|
[50]
|
Mustafa A, Holladay S D, Witonsky S, et al. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts B-cell lymphopoiesis and exacerbates autoimmune disease in 24-week-old SNF1 mice[J]. Toxicol Sci, 2009, 112(1):133-143
|
[51]
|
Li J, McMurray R W. Effects of chronic exposure to DDT and TCDD on disease activity in murine systemic lupus erythematosus[J]. Lupus, 2009, 18(11):941-949
|
[52]
|
Zhang L, Ma J, Takeuchi M, et al. Suppression of experimental autoimmune uveoretinitis by inducing differentiation of regulatory T cells via activation of aryl hydrocarbon receptor[J]. Invest Ophthalmol Vis Sci, 2010, 51(4):2109-2117
|
[53]
|
Marshall N B, Kerkvliet N I. Dioxin and immune regulation:emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells[J]. Ann N Y Acad Sci, 2010, 1183:25-37
|
[54]
|
Luebke R W, Copeland C B, Daniels M, et al. Suppression of allergic immune responses to house dust mite (HDM) in rats exposed to 2,3,7,8-TCDD[J]. Toxicol Sci, 2001, 62(1):71-79
|
[55]
|
Nohara K, Fujimaki H, Tsukumo S, et al. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on T cell-derived cytokine production in ovalbumin (OVA)-immunized C57Bl/6 mice[J]. Toxicology, 2002, 172(1):49-58
|
[56]
|
Fujimaki H, Nohara K, Kobayashi T, et al. Effect of a single oral dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin on immune function in male NC/Nga mice[J]. Toxicol Sci, 2002, 66(1):117-124
|
[57]
|
Inouye K, Pan X, Imai N, et al. T cell-derived IL-5 production is a sensitive target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. Chemosphere, 2005, 60(7):907-913
|
[58]
|
Nohara K, Suzuki T, Ao K, et al. Constitutively active aryl hydrocarbon receptor expressed in T cells increases immunization-induced IFN-gamma production in mice but does not suppress T(h)2-cytokine production or antibody production[J]. Int Immunol, 2009, 21(7):769-777
|
[59]
|
Kimata H. 2,3,7,8-tetrachlorodibenzo-p-dioxin selectively enhances spontaneous IgE production in B cells from atopic patients[J]. Int J Hyg Environ Health, 2003, 206(6):601-604
|
[60]
|
Lawrence B P, Denison M S, Novak H, et al. Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound[J]. Blood, 2008, 112(4):1158-1165
|
[61]
|
Lawrence B P, Warren T K, Luong H. Fewer T lymphocytes and decreased pulmonary influenza virus burden in mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. J Toxicol Environ Health A, 2000, 61(1):39-53
|
[62]
|
Mitchell K A, Lawrence B P. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) renders influenza virus-specific CD8+ T cells hyporesponsive to antigen[J]. Toxicol Sci, 2003, 74(1):74-84
|
[63]
|
Mitchell K A, Lawrence B P. T cell receptor transgenic mice provide novel insights into understanding cellular targets of TCDD:suppression of antibody production, but not the response of CD8(+) T cells, during infection with influenza virus[J]. Toxicol Appl Pharmacol, 2003, 192(3):275-286
|
[64]
|
Vorderstrasse B A, Bohn A A, Lawrence B P. Examining the relationship between impaired host resistance and altered immune function in mice treated with TCDD[J]. Toxicology, 2003, 188(1):15-28
|
[65]
|
Neff-LaFord H D, Vorderstrasse B A, Lawrence BP. Fewer CTL, not enhanced NK cells, are sufficient for viral clearance from the lungs of immunocompromised mice[J]. Cell Immunol, 2003, 226(1):54-64
|
[66]
|
Lawrence BP, Vorderstrasse B A. Activation of the aryl hydrocarbon receptor diminishes the memory response to homotypic influenza virus infection but does not impair host resistance[J]. Toxicol Sci, 2004, 79(2):304-314
|
[67]
|
Lawrence B P, Roberts A D, Neumiller J J, et al. Aryl hydrocarbon receptor activation impairs the priming but not the recall of influenza virus-specific CD8+ T cells in the lung[J]. J Immunol, 2006, 177(9):5819-5828
|
[68]
|
Vorderstrasse B A, Cundiff J A, Lawrence B P. A dose-response study of the effects of prenatal and lactational exposure to TCDD on the immune response to influenza a virus[J]. J Toxicol Environ Health A, 2006, 69(6):445-463
|
[69]
|
Hogaboam J P, Moore A J, Lawrence B P. The aryl hydrocarbon receptor affects distinct tissue compartments during ontogeny of the immune system[J]. Toxicol Sci, 2008, 102(1):160-170
|
[70]
|
Teske S, Bohn A A, Hogaboam J P, et al. Aryl hydrocarbon receptor targets pathways extrinsic to bone marrow cells to enhance neutrophil recruitment during influenza virus infection[J]. Toxicol Sci, 2008, 102(1):89-99
|
[71]
|
Neff-LaFord H, Teske S, Bushnell T P, et al. Aryl hydrocarbon receptor activation during influenza virus infection unveils a novel pathway of IFN-gamma production by phagocytic cells[J]. J Immunol, 2007, 179(1):247-255
|
[72]
|
Esser C, Steinwachs S, Herder C, et al. Effects of a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin, given at post-puberty, in senescent mice[J]. Toxicol Lett, 2005, 157(2):89-98
|
[73]
|
Rier S E, Coe C L, Lemieux A M, et al. Increased tumor necrosis factor-alpha production by peripheral blood leukocytes from TCDD-exposed rhesus monkeys[J]. Toxicol Sci, 2001, 60(2):327-337
|
[74]
|
Rier S E. The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis[J]. Ann N Y Acad Sci, 2002, 955:201-212; discussion 230-232, 396-406
|
[75]
|
Geusau A, Abraham K, Geissler K, et al. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication:clinical and laboratory effects[J]. Environ Health Perspect, 2001, 109(8):865-869
|
[76]
|
Kim H A, Kim E M, Park Y C, et al. Immunotoxicological effects of Agent Orange exposure to the Vietnam War Korean veterans[J]. Ind Health, 2003, 41(3):158-166
|
[77]
|
Beischlag T V, Luis Morales J, Hollingshead B D, et al. The aryl hydrocarbon receptor complex and the control of gene expression[J]. Crit Rev Eukaryot Gene Expr, 2008, 18(3):207-250
|
[78]
|
Vorderstrasse B A, Steppan L B, Silverstone A E, et al. Aryl hydrocarbon receptor-deficient mice generate normal immune responses to model antigens and are resistant to TCDD-induced immune suppression[J]. Toxicol Appl Pharmacol, 2001, 171(3):157-164
|
[79]
|
Matsumura F. The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects[J]. Biochem Pharmacol, 2009, 77(4):608-626
|
[80]
|
Jeon M S, Esser C. The murine IL-2 promoter contains distal regulatory elements responsive to the Ah receptor, a member of the evolutionarily conserved bHLH-PAS transcription factor family[J]. J Immunol, 2000, 165(12):6975-6983
|
[81]
|
Laiosa M D, Lai Z W, Thurmond T S, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin causes alterations in lymphocyte development and thymic atrophy in hemopoietic chimeras generated from mice deficient in ARNT2[J]. Toxicol Sci, 2002, 69(1):1117-1124
|
[82]
|
Levin M, De Guise S, Ross P S. Association between lymphocyte proliferation and polychlorinated biphenyls in free-ranging harbor seal (Phoca vitulina) pups from British Columbia, Canada[J]. Environ Toxicol Chem, 2005, 24(5):1247-1252
|
[83]
|
Bowers O J, Sommersted K B, Sowell R T, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces Leishmania major burdens in C57BL/6 mice[J]. Am J Trop Med Hyg, 2006, 75(4):749-752
|
[84]
|
Vorderstrasse B A, Lawrence B P. Protection against lethal challenge with Streptococcus pneumoniae is conferred by aryl hydrocarbon receptor activation but is not associated with an enhanced inflammatory response[J]. Infect Immun, 2006, 74(10):5679-5686
|
[85]
|
Takamura T, Harama D, Matsuoka S, et al. Activation of the aryl hydrocarbon receptor pathway may ameliorate dextran sodium sulfate-induced colitis in mice[J]. Immunol Cell Biol, 2010, 88(6): 685-689
|