二噁英对免疫系统影响的研究进展

裴新辉, 谢群慧, 胡芹, 赵斌. 二噁英对免疫系统影响的研究进展[J]. 环境化学, 2011, 30(1): 200-210.
引用本文: 裴新辉, 谢群慧, 胡芹, 赵斌. 二噁英对免疫系统影响的研究进展[J]. 环境化学, 2011, 30(1): 200-210.
PEI Xinhui, XIE Qunhui, HU Qin, ZHAO Bin. REVIEW:EFFECTS OF DIOXINS ON THE IMMUNE SYSTEM[J]. Environmental Chemistry, 2011, 30(1): 200-210.
Citation: PEI Xinhui, XIE Qunhui, HU Qin, ZHAO Bin. REVIEW:EFFECTS OF DIOXINS ON THE IMMUNE SYSTEM[J]. Environmental Chemistry, 2011, 30(1): 200-210.

二噁英对免疫系统影响的研究进展

  • 基金项目:

    中国科学院百人计划项目

    国家自然科学基金委创新群体项目(20921063)

    国家重大科学研究计划项目(973项目:2010CB933500).

REVIEW:EFFECTS OF DIOXINS ON THE IMMUNE SYSTEM

  • Fund Project:
  • 摘要: 二噁英是持久性有机污染物的一种,它对人体健康的影响是多方面的,包括引起氯痤疮、诱发肿瘤、导致畸形、内分泌干扰、免疫毒性和肝毒性等等.本文着重总结了在二噁英对免疫系统的影响方面最近的研究进展.研究表明,二噁英可以从多方面干扰免疫系统的功能,它可以影响机体的体液和细胞免疫、超敏反应、自身免疫以及影响免疫细胞本身的活性,同时也可以影响免疫系统的发育,改变其体内细胞因子的表达水平等等.通过二噁英对免疫系统影响的研究,不仅可以加深对二噁英生物学、毒理学以及健康效应的认识, 也可以为进一步了解免疫系统本身的功能提供帮助.
  • 加载中
  • [1] Smith D A, Schurig G G, Smith S A, et al. Tilapia (Oreochromis niloticus) and rodents exhibit similar patterns of inhibited antibody production following exposure to immunotoxic chemicals[J]. Vet Hum Toxicol, 1999, 41(6):368-373
    [2] Suh J, Jeon Y J, Kim H M, et al. Aryl hydrocarbon receptor-dependent inhibition of AP-1 activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin in activated B cells[J]. Toxicol Appl Pharmacol, 2002, 181:116-123
    [3] Ito T, Inouye K, Fujimaki H, et al. Mechanism of TCDD-induced suppression of antibody production:effect on T cell-derived cytokine production in the primary immune reaction of mice[J]. Toxicol Sci, 2002, 70(1):46-54
    [4] Crawford R B, Sulentic C E, Yoo B S, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the regulation and posttranslational modification of p27kip1 in lipopolysaccharide-activated B cells[J]. Toxicol Sci, 2003, 75(2):333-342
    [5] Nakano S, Takekoshi H, Nakano M. Chlorella (Chlorella pyrenoidosa) supplementation decreases dioxin and increases immunoglobulin a concentrations in breast milk[J]. J Med Food, 2007, 10(1):134-142
    [6] North C M, Kim B S, Snyder N, et al. TCDD-mediated suppression of the in vitro anti-sheep erythrocyte IgM antibody forming cell response is reversed by interferon-gamma[J]. Toxicol Sci, 2009, 107(1):85-92
    [7] Baccarelli A, Mocarelli P, Patterson D G Jr, et al. Immunologic effects of dioxin:new results from Seveso and comparison with other studies[J]. Environ Health Perspect, 2002, 110(12):1169-1173
    [8] Schneider D, Manzan M A, Crawford R B, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated impairment of B cell differentiation involves dysregulation of paired box 5 (Pax5) isoform, Pax5a[J]. J Pharmacol Exp Ther, 2008, 326(2):463-374
    [9] Schneider D, Manzan M A, Yoo BS, et al. Involvement of Blimp-1 and AP-1 dysregulation in the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of the IgM response by B cells[J]. Toxicol Sci, 2009, 108(2):377-388
    [10] Inouye K, Ito T, Fujimaki H, et al. Suppressive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the high-affinity antibody response in C57BL/6 mice[J]. Toxicol Sci, 2003, 74(2):315-324
    [11] Ruby C E, Leid M, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin suppresses tumor necrosis factor-alpha and anti-CD40-induced activation of NF-kappaB/Rel in dendritic cells:p50 homodimer activation is not affected[J]. Mol Pharmacol, 2002, 62(3):722-728
    [12] Lee J A, Hwang J A, Sung H N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates functional differentiation of mouse bone marrow-derived dendritic cells Downregulation of RelB by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Toxicol Lett, 2007, 173(1):31-40
    [13] Vorderstrasse B A, Dearstyne E A, Kerkvliet N I. Influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the antigen-presenting activity of dendritic cells[J]. Toxicol Sci, 2003, 72(1):103-112
    [14] Vogel C F, Goth S R, Dong B, et al. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase[J]. Biochem Biophys Res Commun, 2008, 375(3):331-335
    [15] Vorderstrasse B A, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin affects the number and function of murine splenic dendritic cells and their expression of accessory molecules[J]. Toxicol Appl Pharmacol, 2001, 171(2):117-125
    [16] Funatake C J, Dearstyne E A, Steppan L B, et al. Early consequences of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on the activation and survival of antigen-specific T cells[J]. Toxicol Sci, 2004, 82(1):129-142
    [17] Nagai H, Takei T, Tohyama C, et al. Search for the target genes involved in the suppression of antibody production by TCDD in C57BL/6 mice[J]. Int Immunopharmacol, 2005, 5(2):331-343
    [18] Ho-Jun K, Kang B N, Cho S W, et al. Effects of benzopyrene, 2-bromopropane, phenol and 2,3,7,8-tetrachlorodibenzo-p-dioxin on proinflammatory cytokines gene expression by mice spleen cells[J]. J Vet Sci, 2002, 3(4):247-254
    [19] Ishikawa S. Children's immunology, what can we learn from animal studies (3):Impaired mucosal immunity in the gut by 2,3,7,8-tetraclorodibenzo-p-dioxin (TCDD):a possible role for allergic sensitization[J]. J Toxicol Sci, 2009, 34:S349-361
    [20] Kerkvliet N I, Shepherd D M, Baecher-Steppan L. Tlymphocytes are direct, aryl hydrocarbon receptor (AhR)-dependent targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD):AhR expression in both CD4+ and CD8+ T cells is necessary for full suppression of a cytotoxic Tlymphocyte response by TCDD[J]. Toxicol Appl Pharmacol, 2002, 185(2):146-152
    [21] Funatake C J, Marshall N B, Steppan L B, et al. Cutting edge:activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells[J]. J Immunol, 2005, 175(7):4184-4188
    [22] Funatake C J, Marshall N B, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin alters the differentiation of alloreactive CD8+ T cells toward a regulatory T cell phenotype by a mechanism that is dependent on aryl hydrocarbon receptor in CD4+ T cells[J]. J Immunotoxicol, 2008, 5(1):81-91
    [23] Lai Z W, Fiore N C, Hahn P J, et al. Differential effects of diethylstilbestrol and 2,3,7,8-tetrachlorodibenzo-p-dioxin on thymocyte differentiation, proliferation, and apoptosis in bcl-2 transgenic mouse fetal thymus organ culture[J]. Toxicol Appl Pharmacol, 2000, 168(1):15-24
    [24] Laiosa M D, Wyman A, Murante F G, et al. Cell proliferation arrest within intrathymic lymphocyte progenitor cells causes thymic atrophy mediated by the aryl hydrocarbon receptor[J]. J Immunol, 2003, 171(9):4582-4591
    [25] Tomita S, Jiang H B, Ueno T, et al. T cell-specific disruption of arylhydrocarbon receptor nuclear translocator (Arnt) gene causes resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced thymic involution[J]. J Immunol, 2003, 171(8):4113-4120
    [26] Camacho I A, Singh N, Hegde V L, et al. Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells[J]. J Immunol, 2005, 175(1):90-103
    [27] Sugita-Konishi Y, Kobayashi K, Naito H, et al. Effect of lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on the susceptibility to Listeria infection[J]. Biosci Biotechnol Biochem, 2003, 67(1):89-93
    [28] Camacho I A, Nagarkatti M, Nagarkatti P S. Evidence for induction of apoptosis in T cells from murine fetal thymus following perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. Toxicol Sci, 2004, 78(1):96-106
    [29] Gogal RM Jr, Holladay S D. Perinatal TCDD exposure and the adult onset of autoimmune disease[J]. J Immunotoxicol, 2008, 5(4):413-418
    [30] Nagayama J, Tsuji H, Iida T, et al. Immunologic effects of perinatal exposure to dioxins, PCBs and organochlorine pesticides in Japanese infants[J]. Chemosphere, 2007, 67(9):S393-398
    [31] Esser C, Temchura V, Majora M, et al. Signaling via the AHR leads to enhanced usage of CD44v10 by murine fetal thymic emigrants:possible role for CD44 in emigration[J]. Int Immunopharmacol, 2004, 4(6):805-818
    [32] Temchura V V, Frericks M, Nacken W, et al. Role of the aryl hydrocarbon receptor in thymocyte emigration in vivo[J]. Eur J Immunol, 2005, 35(9):2738-2747
    [33] Majora M, Frericks M, Temchura V, et al. Detection of a novel population of fetal thymocytes characterized by preferential emigration and a TCRgammadelta+ T cell fate after dioxin exposure[J]. Int Immunopharmacol, 2005, 5(12):1659-1674
    [34] Kronenberg S, Lai Z, Esser C. Generation of alphabeta T-cell receptor+ CD4- CD8+ cells in major histocompatibility complex class I-deficient mice upon activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Immunology, 2000, 100(2):185-193
    [35] Fisher M T, Nagarkatti M, Nagarkatti P S. 2,3,7,8-tetrachlorodibenzo-p-dioxin enhances negative selection of T cells in the thymus but allows autoreactive T cells to escape deletion and migrate to the periphery[J]. Mol Pharmacol, 2005, 67(1):327-335
    [36] Shepherd D M, Dearstyne E A, Kerkvliet N I. The effects of TCDD on the activation of ovalbumin (OVA)-specific DO11.10 transgenic CD4(+) T cells in adoptively transferred mice[J]. Toxicol Sci, 2000, 56(2):340-350
    [37] Zeytun A, McKallip R J, Fisher M, et al. Analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced gene expression profile in vivo using pathway-specific cDNA arrays[J]. Toxicology, 2002, 178(3):241-260
    [38] Camacho I A, Hassuneh M R, Nagarkatti M, et al. Enhanced activation-induced cell death as a mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity in peripheral T cells[J]. Toxicology, 2001, 165(1):51-63
    [39] Faulconer L, Camacho I, Nagarkatti M, et al. Superantigen-primed T cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) replicate poorly following recall encounter[J]. Arch Toxicol, 2006, 80(3):134-145
    [40] Singh N P, Nagarkatti M, Nagarkatti P. Primary peripheral T cells become susceptible to 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated apoptosis in vitro upon activation and in the presence of dendritic cells[J]. Mol Pharmacol, 2008, 73(6):1722-1735
    [41] Vogel C F, Sciullo E, Matsumura F. Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation[J]. Cardiovasc Toxicol, 2004, 4(4):363-373
    [42] Lecureur V, Ferrec E L, N'diaye M, et al. ERK-dependent induction of TNFalpha expression by the environmental contaminant benzo(a)pyrene in primary human macrophages[J]. FEBS Lett, 2005, 579(9):1904-1910
    [43] Sciullo E M, Dong B, Vogel C F, et al. Characterization of the pattern of the nongenomic signaling pathway through which TCDD-induces early inflammatory responses in U937 human macrophages[J]. Chemosphere, 2009, 74(11):1531-1537
    [44] Abrahams V M, Collins J E, Wira C R, et al. Inhibition of human polymorphonuclear cell oxidative burst by 17-beta-estradiol and 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Am J Reprod Immunol, 2003, 50(6):463-472
    [45] Quintana F J, Basso A S, Iglesias A H, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191):65-71
    [46] Veldhoen M, Hirota K, Westendorf A M, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins[J]. Nature, 2008, 453(7191):106-109
    [47] Mustafa A, Holladay S D, Goff M, et al. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD[J]. Toxicol Appl Pharmacol, 2008, 232(1):51-59
    [48] Ishimaru N, Takagi A, Kohashi M, et al. Neonatal exposure to low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin causes autoimmunity due to the disruption of T cell tolerance[J]. J Immunol, 2009, 182(10):6576-6586
    [49] Mustafa A, Holladay S D, Goff M, et al. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters postnatal T cell phenotypes and T cell function and exacerbates autoimmune lupus in 24-week-old SNF1 mice[J]. Birth Defects Res A Clin Mol Teratol, 2009, 85(10):828-836
    [50] Mustafa A, Holladay S D, Witonsky S, et al. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts B-cell lymphopoiesis and exacerbates autoimmune disease in 24-week-old SNF1 mice[J]. Toxicol Sci, 2009, 112(1):133-143
    [51] Li J, McMurray R W. Effects of chronic exposure to DDT and TCDD on disease activity in murine systemic lupus erythematosus[J]. Lupus, 2009, 18(11):941-949
    [52] Zhang L, Ma J, Takeuchi M, et al. Suppression of experimental autoimmune uveoretinitis by inducing differentiation of regulatory T cells via activation of aryl hydrocarbon receptor[J]. Invest Ophthalmol Vis Sci, 2010, 51(4):2109-2117
    [53] Marshall N B, Kerkvliet N I. Dioxin and immune regulation:emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells[J]. Ann N Y Acad Sci, 2010, 1183:25-37
    [54] Luebke R W, Copeland C B, Daniels M, et al. Suppression of allergic immune responses to house dust mite (HDM) in rats exposed to 2,3,7,8-TCDD[J]. Toxicol Sci, 2001, 62(1):71-79
    [55] Nohara K, Fujimaki H, Tsukumo S, et al. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on T cell-derived cytokine production in ovalbumin (OVA)-immunized C57Bl/6 mice[J]. Toxicology, 2002, 172(1):49-58
    [56] Fujimaki H, Nohara K, Kobayashi T, et al. Effect of a single oral dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin on immune function in male NC/Nga mice[J]. Toxicol Sci, 2002, 66(1):117-124
    [57] Inouye K, Pan X, Imai N, et al. T cell-derived IL-5 production is a sensitive target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. Chemosphere, 2005, 60(7):907-913
    [58] Nohara K, Suzuki T, Ao K, et al. Constitutively active aryl hydrocarbon receptor expressed in T cells increases immunization-induced IFN-gamma production in mice but does not suppress T(h)2-cytokine production or antibody production[J]. Int Immunol, 2009, 21(7):769-777
    [59] Kimata H. 2,3,7,8-tetrachlorodibenzo-p-dioxin selectively enhances spontaneous IgE production in B cells from atopic patients[J]. Int J Hyg Environ Health, 2003, 206(6):601-604
    [60] Lawrence B P, Denison M S, Novak H, et al. Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound[J]. Blood, 2008, 112(4):1158-1165
    [61] Lawrence B P, Warren T K, Luong H. Fewer T lymphocytes and decreased pulmonary influenza virus burden in mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. J Toxicol Environ Health A, 2000, 61(1):39-53
    [62] Mitchell K A, Lawrence B P. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) renders influenza virus-specific CD8+ T cells hyporesponsive to antigen[J]. Toxicol Sci, 2003, 74(1):74-84
    [63] Mitchell K A, Lawrence B P. T cell receptor transgenic mice provide novel insights into understanding cellular targets of TCDD:suppression of antibody production, but not the response of CD8(+) T cells, during infection with influenza virus[J]. Toxicol Appl Pharmacol, 2003, 192(3):275-286
    [64] Vorderstrasse B A, Bohn A A, Lawrence B P. Examining the relationship between impaired host resistance and altered immune function in mice treated with TCDD[J]. Toxicology, 2003, 188(1):15-28
    [65] Neff-LaFord H D, Vorderstrasse B A, Lawrence BP. Fewer CTL, not enhanced NK cells, are sufficient for viral clearance from the lungs of immunocompromised mice[J]. Cell Immunol, 2003, 226(1):54-64
    [66] Lawrence BP, Vorderstrasse B A. Activation of the aryl hydrocarbon receptor diminishes the memory response to homotypic influenza virus infection but does not impair host resistance[J]. Toxicol Sci, 2004, 79(2):304-314
    [67] Lawrence B P, Roberts A D, Neumiller J J, et al. Aryl hydrocarbon receptor activation impairs the priming but not the recall of influenza virus-specific CD8+ T cells in the lung[J]. J Immunol, 2006, 177(9):5819-5828
    [68] Vorderstrasse B A, Cundiff J A, Lawrence B P. A dose-response study of the effects of prenatal and lactational exposure to TCDD on the immune response to influenza a virus[J]. J Toxicol Environ Health A, 2006, 69(6):445-463
    [69] Hogaboam J P, Moore A J, Lawrence B P. The aryl hydrocarbon receptor affects distinct tissue compartments during ontogeny of the immune system[J]. Toxicol Sci, 2008, 102(1):160-170
    [70] Teske S, Bohn A A, Hogaboam J P, et al. Aryl hydrocarbon receptor targets pathways extrinsic to bone marrow cells to enhance neutrophil recruitment during influenza virus infection[J]. Toxicol Sci, 2008, 102(1):89-99
    [71] Neff-LaFord H, Teske S, Bushnell T P, et al. Aryl hydrocarbon receptor activation during influenza virus infection unveils a novel pathway of IFN-gamma production by phagocytic cells[J]. J Immunol, 2007, 179(1):247-255
    [72] Esser C, Steinwachs S, Herder C, et al. Effects of a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin, given at post-puberty, in senescent mice[J]. Toxicol Lett, 2005, 157(2):89-98
    [73] Rier S E, Coe C L, Lemieux A M, et al. Increased tumor necrosis factor-alpha production by peripheral blood leukocytes from TCDD-exposed rhesus monkeys[J]. Toxicol Sci, 2001, 60(2):327-337
    [74] Rier S E. The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis[J]. Ann N Y Acad Sci, 2002, 955:201-212; discussion 230-232, 396-406
    [75] Geusau A, Abraham K, Geissler K, et al. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication:clinical and laboratory effects[J]. Environ Health Perspect, 2001, 109(8):865-869
    [76] Kim H A, Kim E M, Park Y C, et al. Immunotoxicological effects of Agent Orange exposure to the Vietnam War Korean veterans[J]. Ind Health, 2003, 41(3):158-166
    [77] Beischlag T V, Luis Morales J, Hollingshead B D, et al. The aryl hydrocarbon receptor complex and the control of gene expression[J]. Crit Rev Eukaryot Gene Expr, 2008, 18(3):207-250
    [78] Vorderstrasse B A, Steppan L B, Silverstone A E, et al. Aryl hydrocarbon receptor-deficient mice generate normal immune responses to model antigens and are resistant to TCDD-induced immune suppression[J]. Toxicol Appl Pharmacol, 2001, 171(3):157-164
    [79] Matsumura F. The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects[J]. Biochem Pharmacol, 2009, 77(4):608-626
    [80] Jeon M S, Esser C. The murine IL-2 promoter contains distal regulatory elements responsive to the Ah receptor, a member of the evolutionarily conserved bHLH-PAS transcription factor family[J]. J Immunol, 2000, 165(12):6975-6983
    [81] Laiosa M D, Lai Z W, Thurmond T S, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin causes alterations in lymphocyte development and thymic atrophy in hemopoietic chimeras generated from mice deficient in ARNT2[J]. Toxicol Sci, 2002, 69(1):1117-1124
    [82] Levin M, De Guise S, Ross P S. Association between lymphocyte proliferation and polychlorinated biphenyls in free-ranging harbor seal (Phoca vitulina) pups from British Columbia, Canada[J]. Environ Toxicol Chem, 2005, 24(5):1247-1252
    [83] Bowers O J, Sommersted K B, Sowell R T, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces Leishmania major burdens in C57BL/6 mice[J]. Am J Trop Med Hyg, 2006, 75(4):749-752
    [84] Vorderstrasse B A, Lawrence B P. Protection against lethal challenge with Streptococcus pneumoniae is conferred by aryl hydrocarbon receptor activation but is not associated with an enhanced inflammatory response[J]. Infect Immun, 2006, 74(10):5679-5686
    [85] Takamura T, Harama D, Matsuoka S, et al. Activation of the aryl hydrocarbon receptor pathway may ameliorate dextran sodium sulfate-induced colitis in mice[J]. Immunol Cell Biol, 2010, 88(6): 685-689
  • 加载中
计量
  • 文章访问数:  1066
  • HTML全文浏览数:  1036
  • PDF下载数:  364
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-08-11
裴新辉, 谢群慧, 胡芹, 赵斌. 二噁英对免疫系统影响的研究进展[J]. 环境化学, 2011, 30(1): 200-210.
引用本文: 裴新辉, 谢群慧, 胡芹, 赵斌. 二噁英对免疫系统影响的研究进展[J]. 环境化学, 2011, 30(1): 200-210.
PEI Xinhui, XIE Qunhui, HU Qin, ZHAO Bin. REVIEW:EFFECTS OF DIOXINS ON THE IMMUNE SYSTEM[J]. Environmental Chemistry, 2011, 30(1): 200-210.
Citation: PEI Xinhui, XIE Qunhui, HU Qin, ZHAO Bin. REVIEW:EFFECTS OF DIOXINS ON THE IMMUNE SYSTEM[J]. Environmental Chemistry, 2011, 30(1): 200-210.

二噁英对免疫系统影响的研究进展

  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 100085, 北京
基金项目:

中国科学院百人计划项目

国家自然科学基金委创新群体项目(20921063)

国家重大科学研究计划项目(973项目:2010CB933500).

摘要: 二噁英是持久性有机污染物的一种,它对人体健康的影响是多方面的,包括引起氯痤疮、诱发肿瘤、导致畸形、内分泌干扰、免疫毒性和肝毒性等等.本文着重总结了在二噁英对免疫系统的影响方面最近的研究进展.研究表明,二噁英可以从多方面干扰免疫系统的功能,它可以影响机体的体液和细胞免疫、超敏反应、自身免疫以及影响免疫细胞本身的活性,同时也可以影响免疫系统的发育,改变其体内细胞因子的表达水平等等.通过二噁英对免疫系统影响的研究,不仅可以加深对二噁英生物学、毒理学以及健康效应的认识, 也可以为进一步了解免疫系统本身的功能提供帮助.

English Abstract

参考文献 (85)

返回顶部

目录

/

返回文章
返回