有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律

杨杰文, 钟来元, 郭荣发. 有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律[J]. 环境化学, 2011, 30(7): 1348-1353.
引用本文: 杨杰文, 钟来元, 郭荣发. 有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律[J]. 环境化学, 2011, 30(7): 1348-1353.
YANG Jiewen, ZHONG Laiyuan, GUO Rongfa. RELEASE OF Mn(Ⅱ) DURING ORGANIC ACID PROMOTED DISSOLUTION OF LATOSOL[J]. Environmental Chemistry, 2011, 30(7): 1348-1353.
Citation: YANG Jiewen, ZHONG Laiyuan, GUO Rongfa. RELEASE OF Mn(Ⅱ) DURING ORGANIC ACID PROMOTED DISSOLUTION OF LATOSOL[J]. Environmental Chemistry, 2011, 30(7): 1348-1353.

有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律

  • 基金项目:

    国家自然科学基金面上项目(40871156)

    土壤与农业可持续发展国家重点实验室开放基金(081000040).

RELEASE OF Mn(Ⅱ) DURING ORGANIC ACID PROMOTED DISSOLUTION OF LATOSOL

  • Fund Project:
  • 摘要: 研究土壤Mn(Ⅱ)释放规律对揭示锰氧化物的形成机制和了解酸性土壤锰毒效应大小具有重要意义.结果表明,柠檬酸溶解砖红壤过程中,Mn(Ⅱ)的释放速率在前4 h比较迅速,其释放数量可达24 h反应时间内总释放量的59.5%,但随后释放速率逐渐减缓.快速阶段被认为是土壤表面交换态Mn(Ⅱ)的释放,而慢速阶段则与土壤锰氧化物的缓慢溶解密切相关.低pH条件有利于Mn(Ⅱ)释放,其释放机制包含柠檬酸对土壤锰氧化物的还原-溶解.Al(Ⅲ)对Mn(Ⅱ)的释放有抑制作用,而Fe(Ⅲ)则有促进作用.有机酸的解离性质及官能团活性对Mn(Ⅱ)的释放有重要影响.在所研究的pH范围内,Mn(Ⅱ)释放数量按柠檬酸>丙酮酸>酒石酸>苹果酸≈乳酸的顺序下降.此外,就草酸和柠檬酸比较而言,当pH值小于4.25,草酸体系中Mn(Ⅱ)释放数量大于后者,但随着pH升高,则表现出相反的规律.
  • 加载中
  • [1] Kim J G, Dixon J B, Chusuei C C, et al. Oxidation of chromium(Ⅲ) to (Ⅵ) by manganese oxides[J]. Soil Sci Soc Amer J, 2002, 66(1):306-315
    [2] Tournassat C, Charlet L, Bosbach D, et al. Arsenic(Ⅲ) oxidation by birnessite and precipitation of manganese(Ⅱ) arsenate[J]. Environ Sci Technol, 2002, 36(3):493-500
    [3] Tebo B M, Bargar J R, Clement B C, et al.Biogenic manganese oxides: Properties and mechanisms of formation[J]. Annu Rev Earth Planet Sci, 2004, 32:287-328
    [4] Matocha C J, Sparks D L, Amonette J E, et al. Kinetics and mechanism of birnessite reduction by catechol[J]. Soil Sci Soc Amer J, 2001, 65(1):58-66
    [5] Wang Y, Stone A T. The citric acid-MnⅢ, IVO2 (birnessite) reaction. Electron transfer, complexes formation, and autocatalytic feedback[J]. Geochim Cosmochim Acta, 2006, 70(17):4463-4476
    [6] Wang Y, Stone A T. Reaction of MnⅢ, IV (hydr)oxides with oxalic acid, glyoxylic acid, phosphonoformic acid, and structurally-related organic compounds[J]. Geochim Cosmochim Acta, 2006, 70(17):4477-4490
    [7] Klewicki J K, Morgan J J. Dissolution of β-MnOOH particles by ligands: Pyrophosphate, ethylenediaminetetraacetate, and citrate[J]. Geochim Cosmochim Acta, 1999, 63(19-20):3017-3024
    [8] Banerjee D, Nesbitt H W. XPS study of reductive dissolution of birnessite by oxalte: Rates and mechanistic aspects of dissolution and redox processes[J]. Geochim Cosmochim Acta, 1999, 63(19-20):3025-3038
    [9] Banerjee D, Nesbitt H W. XPS study of dissolution of birnessite by humate with constraints on reaction mechanism[J]. Geochim Cosmochim Acta, 2001, 65(11):1703-1714
    [10] Nugent M A, Brantly S L, Pantano C G, et al. The influence of natural mineral coatings on feldspar weathering[J].Nature, 1998, 395:588-591
    [11] Hodson M E. The influence of Fe-rich coatings on the dissolution of anorthite at pH 2.6[J].Geochim Cosmochim Acta, 2003, 67(18):3355-3363
    [12] Cubillas P, Khler S, Prieto M, et al. How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution-CdCO3 precipitation[J]. Geochim Cosmochim Acta, 2005, 69(23):5459-5476
    [13] Christopher G, Hesterberg D. Iron and phosphate dissolution during abiotic reduction of ferrihydrite-boehmite mixtures[J]. Soil Sci Soc Amer J, 2006, 70(4):1318-1327
    [14] Postma D, Appelo C A J. Reduction of Mn-oxides by ferrous iron in a flow system: Column experiment and reactive transport modeling[J]. Geochim Cosmochim Acta, 2000, 64(7):1237-1247
    [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000
    [16] 徐仁扣, 刘志光. 甲醛肟比色法测定土壤中Mn2+时对干扰的消除[J]. 土壤, 1992, 24 (6):321-323
    [17] Guest C A, Schulze D G, Thompson I A, et al.Correlating manganese X-Ray absorption near-edge structure spectra with extractable soil manganese[J]. Soil Sci Soc Amer J, 2002, 66(4):1172-1181
    [18] 杨杰文, 钟来元, 郭荣发, 等. 有机酸对砖红壤的溶解及固定态磷素的活化研究[J]. 环境化学, 2010,29(6):1063-1067
    [19] 邓南圣, 吴峰. 环境光化学[M]. 北京: 化学工业出版社, 2003:434-459
    [20] Suter D, Banwart S, Stumm W. Dissolution of hydrous iron(Ⅲ) oxides by reductive mechanisms [J].Langmuir, 1991, 7(4):809-813
    [21] Johnson S E, Loeppert R H. Role of organic acids in phosphate mobilization from iron oxides[J]. Soil Sci Soc Amer J, 2006, 70(1):222-234
  • 加载中
计量
  • 文章访问数:  854
  • HTML全文浏览数:  823
  • PDF下载数:  381
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-10-28
杨杰文, 钟来元, 郭荣发. 有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律[J]. 环境化学, 2011, 30(7): 1348-1353.
引用本文: 杨杰文, 钟来元, 郭荣发. 有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律[J]. 环境化学, 2011, 30(7): 1348-1353.
YANG Jiewen, ZHONG Laiyuan, GUO Rongfa. RELEASE OF Mn(Ⅱ) DURING ORGANIC ACID PROMOTED DISSOLUTION OF LATOSOL[J]. Environmental Chemistry, 2011, 30(7): 1348-1353.
Citation: YANG Jiewen, ZHONG Laiyuan, GUO Rongfa. RELEASE OF Mn(Ⅱ) DURING ORGANIC ACID PROMOTED DISSOLUTION OF LATOSOL[J]. Environmental Chemistry, 2011, 30(7): 1348-1353.

有机酸溶解砖红壤过程中Mn(Ⅱ)的释放规律

  • 1. 广东海洋大学农学院资源与环境系, 湛江, 524088
基金项目:

国家自然科学基金面上项目(40871156)

土壤与农业可持续发展国家重点实验室开放基金(081000040).

摘要: 研究土壤Mn(Ⅱ)释放规律对揭示锰氧化物的形成机制和了解酸性土壤锰毒效应大小具有重要意义.结果表明,柠檬酸溶解砖红壤过程中,Mn(Ⅱ)的释放速率在前4 h比较迅速,其释放数量可达24 h反应时间内总释放量的59.5%,但随后释放速率逐渐减缓.快速阶段被认为是土壤表面交换态Mn(Ⅱ)的释放,而慢速阶段则与土壤锰氧化物的缓慢溶解密切相关.低pH条件有利于Mn(Ⅱ)释放,其释放机制包含柠檬酸对土壤锰氧化物的还原-溶解.Al(Ⅲ)对Mn(Ⅱ)的释放有抑制作用,而Fe(Ⅲ)则有促进作用.有机酸的解离性质及官能团活性对Mn(Ⅱ)的释放有重要影响.在所研究的pH范围内,Mn(Ⅱ)释放数量按柠檬酸>丙酮酸>酒石酸>苹果酸≈乳酸的顺序下降.此外,就草酸和柠檬酸比较而言,当pH值小于4.25,草酸体系中Mn(Ⅱ)释放数量大于后者,但随着pH升高,则表现出相反的规律.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回