双酚芴对斑马鱼神经行为的影响及毒性作用机制
Toxic Effects of Bisphenol Fluorene on Zebrafish Neurobehavior and Its Underlying Mechanism
-
摘要: 基于斑马鱼模型探究双酚芴(9,9-bis (4-hydroxyphenyl) fluorine,BHPF)诱导的神经毒性及作用机制。通过黑白箱测试、新型水槽测试和T迷宫测试开展BHPF对斑马鱼神经行为学影响的检测,通过实时荧光定量PCR (quantitative real-time PCR,qRT-PCR)研究BHPF神经毒性的作用机制。黑白箱测试结果显示,BHPF造成斑马鱼运动能力异常;新型水槽测试结果显示,BHPF导致斑马鱼探索行为异常;T迷宫测试结果显示,BHPF对斑马鱼学习记忆能力产生影响。qRT-PCR结果显示,BHPF可以造成斑马鱼神经发育、自噬和凋亡相关基因的异常表达。本研究揭示了BHPF可以造成斑马鱼运动能力和探索行为异常,影响学习记忆功能。BHPF通过影响神经发育、自噬和凋亡等途径诱导神经毒性。Abstract: Investigating the neurotoxicity induced by 9,9-bis(4-hydroxyphenyl) fluorene (BHPF) and its mechanism based on zebrafish model. Using zebrafish as a model, the neurobehavioral study of BHPF was carried out by using light/dark tests, novel tank tests, and T-maze tests. Quantitative real-time PCR (qRT-PCR) was used to investigate the mechanism of neurotoxicity induced by BHPF. Light/dark tests showed that BHPF caused abnormal locomotor ability of zebrafish. Novel tank tests indicated that BHPF induced abnormal exploration behavior of zebrafish. T-maze tests revealed that BHPF had adverse effects on learning and memory ability of zebrafish. qRT-PCR results showed that BHPF could cause abnormal expression of genes related to neurodevelopment, autophagy, and apoptosis. This study revealed that BHPF causes abnormal locomotor ability and exploration behavior in zebrafish, as well as injured learning and memory ability. BHPF induces neurotoxicity by affecting neurodevelopment, autophagy, and apoptosis.
-
Key words:
- bisphenol fluorene /
- zebrafish /
- neurological behavior /
- neurodevelopment /
- autophagy /
- acute toxicity
-
-
Jiao X F, Liang Q M, Wu D, et al. Effects of acute fluorene-9-bisphenol exposure on mouse oocyte in vitro maturation and its possible mechanisms[J]. Environmental and Molecular Mutagenesis, 2018, 60(3):243-253 李红梅, 熊忆茗, 徐海明, 等. 双酚A类似物的雄性生殖毒性研究进展[J]. 中国环境科学, 2021, 41(6):2939-2945 Li H M, Xiong Y M, Xu H M, et al. Research progress in male reproductive toxicity of bisphenol A analogues[J]. China Environmental Science, 2021, 41(6):2939-2945(in Chinese)
Lalonde B, Garron C. Spatial and temporal distribution of BPA in the Canadian freshwater environment[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(4):568-578 Li X, Sun M Z, Li X, et al. Impact of low-dose chronic exposure to bisphenol A (BPA) on adult male zebrafish adaption to the environmental complexity:Disturbing the color preference patterns and reliving the anxiety behavior[J]. Chemosphere, 2017, 186:295-304 Zhang Z B, Hu Y, Guo J L, et al. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice[J]. Nature Communications, 2017, 8:14585 何锦, 薛永来, 周磊, 等. 几类常见污染物对斑马鱼运动影响的研究进展[J]. 生态毒理学报, 2020, 15(2):19-28 He J, Xue Y L, Zhou L, et al. Research advances in the effects of several common pollutants on zebrafish movement[J]. Asian Journal of Ecotoxicology, 2020, 15(2):19-28(in Chinese)
Rice N C, Rauscher N A, Langston J L, et al. Behavioral toxicity of sodium cyanide following oral ingestion in rats:Dose-dependent onset, severity, survival, and recovery[J]. Food and Chemical Toxicology, 2018, 114:145-154 Jeong J Y, Kwon H B, Ahn J C, et al. Functional and developmental analysis of the blood-brain barrier in zebrafish[J]. Brain Research Bulletin, 2008, 75(5):619-628 Alzualde A, Behl M, Sipes N S, et al. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance[J]. Neurotoxicology and Teratology, 2018, 70:40-50 Jin M, Dang J, Paudel Y N, et al. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish[J]. The Science of the Total Environment, 2021, 776:145963 Mi P, Zhang Q P, Zhang S H, et al. The effects of fluorene-9-bisphenol on female zebrafish (Danio rerio) reproductive and exploratory behaviors[J]. Chemosphere, 2019, 228:398-411 朱小乔, 唐天乐, 彭翔, 等. 双酚AF暴露降低斑马鱼学习记忆能力并影响神经系统相关基因表达[J]. 生态毒理学报, 2017, 12(1):119-126 Zhu X Q, Tang T L, Peng X, et al. Bisphenol AF exposure reduces learning and memory ability and influences expression of nervous system genes in zebrafish[J]. Asian Journal of Ecotoxicology, 2017, 12(1):119-126(in Chinese)
韩沐汐, 杨晋娴, 吴依帆, 等. 氯化锑对斑马鱼胚胎发育的影响[J]. 毒理学杂志, 2018, 32(6):447-451 Han M X, Yang J X, Wu Y F, et al. Effects of antimony trichloride exposure on development of zebrafish embryo[J]. Journal of Toxicology, 2018, 32(6):447-451(in Chinese)
Jin M, Ji X N, Zhang B Y, et al. Synergistic effects of Pb and repeated heat pulse on developmental neurotoxicity in zebrafish[J]. Ecotoxicology and Environmental Safety, 2019, 172:460-470 Herrera D G, Robertson H A. Activation of c-fos in the brain[J]. Progress in Neurobiology, 1996, 50(2-3):83-107 Church B G, van Sprang P A, Chowdhury M J, et al. Updated species sensitivity distribution evaluations for acute and chronic lead toxicity to saltwater aquatic life[J]. Environmental Toxicology and Chemistry, 2017, 36(11):2974-2980 He X W, Gao J W, Dong T Y, et al. Developmental neurotoxicity of methamidophos in the embryo-larval stages of zebrafish[J]. International Journal of Environmental Research and Public Health, 2016, 14(1):23 Eryilmaz A, Cengiz A, Basal Y, et al. The correlation of prognostic biomarkers (Ki-67, Bcl-2, HIF-1α, cyclin D1) with metabolic tumor volume measured by F-FDG PET/CT inlaryngeal cancer[J]. Journal of Cancer Research and Therapeutics, 2018, 14(5):994-998 Feng L, Liu Y, Jin L, et al. MiR-486-3p regulates proliferation, apoptosis, migration and invasion of colorectal cancer cells by directly targeting BIK[J]. Chinese Journal of Immunology, 2021, 37(8):964-969 Huang F, Wang B R, Wang Y G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma[J]. World Journal of Gastroenterology, 2018, 24(41):4643-4651 Han Q, Deng Y C, Chen S, et al. Downregulation of ATG5-dependent macroautophagy by chaperone-mediated autophagy promotes breast cancer cell metastasis[J]. Scientific Reports, 2017, 7(1):4759 Wang X, Fu Y F, Liu X, et al. ROS promote ox-LDL-induced platelet activation by up-regulating autophagy through the inhibition of the PI3K/AKT/mTOR pathway[J]. Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2018, 50(5):1779-1793 Cackovic J, Gutierrez-Luke S, Call G B, et al. Vulnerable parkin loss-of-function Drosophila dopaminergic neurons have advanced mitochondrial aging, mitochondrial network loss and transiently reduced autophagosome recruitment[J]. Frontiers in Cellular Neuroscience, 2018, 12:39 Fuqua J D, Mere C P, Kronemberger A, et al. ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2019, 33(11):11735-11745 -

计量
- 文章访问数: 2677
- HTML全文浏览数: 2677
- PDF下载数: 113
- 施引文献: 0