Jiao X F, Liang Q M, Wu D, et al. Effects of acute fluorene-9-bisphenol exposure on mouse oocyte in vitro maturation and its possible mechanisms[J]. Environmental and Molecular Mutagenesis, 2018, 60(3):243-253
李红梅, 熊忆茗, 徐海明, 等. 双酚A类似物的雄性生殖毒性研究进展[J]. 中国环境科学, 2021, 41(6):2939-2945 Li H M, Xiong Y M, Xu H M, et al. Research progress in male reproductive toxicity of bisphenol A analogues[J]. China Environmental Science, 2021, 41(6):2939-2945(in Chinese)
Lalonde B, Garron C. Spatial and temporal distribution of BPA in the Canadian freshwater environment[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(4):568-578
Li X, Sun M Z, Li X, et al. Impact of low-dose chronic exposure to bisphenol A (BPA) on adult male zebrafish adaption to the environmental complexity:Disturbing the color preference patterns and reliving the anxiety behavior[J]. Chemosphere, 2017, 186:295-304
Zhang Z B, Hu Y, Guo J L, et al. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice[J]. Nature Communications, 2017, 8:14585
何锦, 薛永来, 周磊, 等. 几类常见污染物对斑马鱼运动影响的研究进展[J]. 生态毒理学报, 2020, 15(2):19-28 He J, Xue Y L, Zhou L, et al. Research advances in the effects of several common pollutants on zebrafish movement[J]. Asian Journal of Ecotoxicology, 2020, 15(2):19-28(in Chinese)
Rice N C, Rauscher N A, Langston J L, et al. Behavioral toxicity of sodium cyanide following oral ingestion in rats:Dose-dependent onset, severity, survival, and recovery[J]. Food and Chemical Toxicology, 2018, 114:145-154
Jeong J Y, Kwon H B, Ahn J C, et al. Functional and developmental analysis of the blood-brain barrier in zebrafish[J]. Brain Research Bulletin, 2008, 75(5):619-628
Alzualde A, Behl M, Sipes N S, et al. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance[J]. Neurotoxicology and Teratology, 2018, 70:40-50
Jin M, Dang J, Paudel Y N, et al. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish[J]. The Science of the Total Environment, 2021, 776:145963
Mi P, Zhang Q P, Zhang S H, et al. The effects of fluorene-9-bisphenol on female zebrafish (Danio rerio) reproductive and exploratory behaviors[J]. Chemosphere, 2019, 228:398-411
朱小乔, 唐天乐, 彭翔, 等. 双酚AF暴露降低斑马鱼学习记忆能力并影响神经系统相关基因表达[J]. 生态毒理学报, 2017, 12(1):119-126 Zhu X Q, Tang T L, Peng X, et al. Bisphenol AF exposure reduces learning and memory ability and influences expression of nervous system genes in zebrafish[J]. Asian Journal of Ecotoxicology, 2017, 12(1):119-126(in Chinese)
韩沐汐, 杨晋娴, 吴依帆, 等. 氯化锑对斑马鱼胚胎发育的影响[J]. 毒理学杂志, 2018, 32(6):447-451 Han M X, Yang J X, Wu Y F, et al. Effects of antimony trichloride exposure on development of zebrafish embryo[J]. Journal of Toxicology, 2018, 32(6):447-451(in Chinese)
Jin M, Ji X N, Zhang B Y, et al. Synergistic effects of Pb and repeated heat pulse on developmental neurotoxicity in zebrafish[J]. Ecotoxicology and Environmental Safety, 2019, 172:460-470
Herrera D G, Robertson H A. Activation of c-fos in the brain[J]. Progress in Neurobiology, 1996, 50(2-3):83-107
Church B G, van Sprang P A, Chowdhury M J, et al. Updated species sensitivity distribution evaluations for acute and chronic lead toxicity to saltwater aquatic life[J]. Environmental Toxicology and Chemistry, 2017, 36(11):2974-2980
He X W, Gao J W, Dong T Y, et al. Developmental neurotoxicity of methamidophos in the embryo-larval stages of zebrafish[J]. International Journal of Environmental Research and Public Health, 2016, 14(1):23
Eryilmaz A, Cengiz A, Basal Y, et al. The correlation of prognostic biomarkers (Ki-67, Bcl-2, HIF-1α, cyclin D1) with metabolic tumor volume measured by F-FDG PET/CT inlaryngeal cancer[J]. Journal of Cancer Research and Therapeutics, 2018, 14(5):994-998
Feng L, Liu Y, Jin L, et al. MiR-486-3p regulates proliferation, apoptosis, migration and invasion of colorectal cancer cells by directly targeting BIK[J]. Chinese Journal of Immunology, 2021, 37(8):964-969
Huang F, Wang B R, Wang Y G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma[J]. World Journal of Gastroenterology, 2018, 24(41):4643-4651
Han Q, Deng Y C, Chen S, et al. Downregulation of ATG5-dependent macroautophagy by chaperone-mediated autophagy promotes breast cancer cell metastasis[J]. Scientific Reports, 2017, 7(1):4759
Wang X, Fu Y F, Liu X, et al. ROS promote ox-LDL-induced platelet activation by up-regulating autophagy through the inhibition of the PI3K/AKT/mTOR pathway[J]. Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2018, 50(5):1779-1793
Cackovic J, Gutierrez-Luke S, Call G B, et al. Vulnerable parkin loss-of-function Drosophila dopaminergic neurons have advanced mitochondrial aging, mitochondrial network loss and transiently reduced autophagosome recruitment[J]. Frontiers in Cellular Neuroscience, 2018, 12:39
Fuqua J D, Mere C P, Kronemberger A, et al. ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2019, 33(11):11735-11745