重金属污染物及其复合暴露的生物效应及机制研究进展
Research Progress on Biological Effects and Mechanisms of Heavy Metal Pollutants and Their Combined Exposure
-
摘要: 随着工业生产活动的快速发展,重金属污染已经成为不可忽视的环境问题。重金属作为一类持久性的污染物,能够在环境中长期存在,并与其他污染物相互作用从而对生物体造成影响。目前,单一重金属的毒理效应及致毒机理已开展系统研究,但多种重金属复合暴露的毒性效应及分子研究仍较为匮乏。本文归纳了近年来重金属复合暴露对不同生物模型的毒性作用,发现复合重金属引起的毒理效应与复合重金属种类、数量、浓度、暴露时间和受试模型有关,阐释了复合暴露通过改变重金属在生物体内吸收、累积以及与生物大分子作用影响其毒性效应的分子机制。基于目前的研究现状,我们认为未来的重金属复合毒性研究应更加注重环境相关性,引入新的检测技术和生物信息学的分析方法,进一步深入挖掘重金属复合致毒的物理化学和生物学机制。Abstract: With the rapid development of modern industry, heavy metal pollution has become a serious threat to the environment. Due to the persistent nature, heavy metals can interact with other pollutants in the environment and cause adverse effects on living organisms. The biological effects of single heavy metals have been systematically studied, but there is a lack of research on the mechanisms of the joint toxicity from heavy metal co-exposure. In this review, we summarized the effects of heavy metal co-exposures on different models, and found them related to heavy metal combination, dose, and exposure time. Generally speaking, heavy metal co-exposure can cause altered uptake and accumulation of heavy metals by organisms and their interaction with biological molecules. Based on the current state of research, we suggest that future work on the toxicity of heavy metal co-exposure should focus on the environmental relevance of experiment design. New analytical tools and research methods based on bioinformatics are needed to further explore the physicochemical and biological mechanisms of joint toxicity of heavy metals.
-
Key words:
- heavy metals /
- co-exposure /
- toxicity /
- mechanism /
- model
-
-
Islam M S, Ahmed M K, Raknuzzaman M, et al. Heavy metal pollution in surface water and sediment:A preliminary assessment of an urban river in a developing country[J]. Ecological Indicators, 2015, 48:282-291 Lin H S, Li H J, Yang X L, et al. Comprehensive investigation and assessment of nutrient and heavy metal contamination in the surface water of coastal Bohai Sea in China[J]. Journal of Ocean University of China, 2020, 19(4):843-852 Hu X F, Jiang Y, Shu Y, et al. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields[J]. Journal of Geochemical Exploration, 2014, 147:139-150 Marrugo-Negrete J, Pinedo-Hernández J, Díez S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia[J]. Environmental Research, 2017, 154:380-388 Harada M. Minamata disease:Methylmercury poisoning in Japan caused by environmental pollution[J]. Critical Reviews in Toxicology, 1995, 25(1):1-24 Holdaway J, Wang W Y. From soil pollution to "cadmium rice" to public health impacts:An interdisciplinary analysis of influencing factors and possible responses[J]. Journal of Resources and Ecology, 2018, 9(1):1 Chai B W, Wei Q, She Y Z, et al. Soil microplastic pollution in an e-waste dismantling zone of China[J]. Waste Management, 2020, 118:291-301 Iordache A M, Nechita C, Pluhacek T, et al. Past and present anthropic environmental stress reflect high susceptibility of natural freshwater ecosystems in Romania[J]. Environmental Pollution, 2020, 267:115505 Huang W J, Pang Y T, Luo X S, et al. The cytotoxicity and genotoxicity of PM2.5 during a snowfall event in different functional areas of a megacity[J]. The Science of the Total Environment, 2020, 741:140267 Feng W W, Wu X S, Mao G H, et al. Neurological effects of subchronic exposure to dioctyl phthalate (DOP), lead, and arsenic, individual and mixtures, in immature mice[J]. Environmental Science and Pollution Research International, 2020, 27(9):9247-9260 马青清, 王博, 张责研, 等. 太湖北部表层沉积物重金属污染及其生物毒性研究[J]. 生态毒理学报, 2016, 11(3):204-210 Ma Q Q, Wang B, Zhang Z Y, et al. Study on heavy metals pollution in sediments from north of Taihu Lake and its biological toxicity[J]. Asian Journal of Ecotoxicology, 2016, 11(3):204-210(in Chinese)
张明兴, 王莹, 王立军, 等. 重金属和聚苯乙烯微球对卤虫的复合毒性效应研究[J]. 生态毒理学报, 2019, 14(1):99-105 Zhang M X, Wang Y, Wang L J, et al. Combined toxicity of polystyrene microplastics and heavy metals to brine shrimp (Artemia parthenogenetica)[J]. Asian Journal of Ecotoxicology, 2019, 14(1):99-105(in Chinese)
Martin O, Scholze M, Ermler S, et al. Ten years of research on synergisms and antagonisms in chemical mixtures:A systematic review and quantitative reappraisal of mixture studies[J]. Environment International, 2021, 146:106206 Wang Z J, Liu S S, Feng L, et al. BNNmix:A new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network[J]. Science of the Total Environment, 2020, 738:140317 Bhagat J, Nishimura N, Shimada Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants:Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2021, 405:123913 Freire C, Amaya E, Gil F, et al. Placental metal concentrations and birth outcomes:The Environment and Childhood (INMA) project[J]. International Journal of Hygiene and Environmental Health, 2019, 222(3):468-478 Kim S S, Xu X J, Zhang Y L, et al. Birth outcomes associated with maternal exposure to metals from informal electronic waste recycling in Guiyu, China[J]. Environment International, 2020, 137:105580 Moody E C, Colicino E, Wright R O, et al. Environmental exposure to metal mixtures and linear growth in healthy Ugandan children[J]. PLoS One, 2020, 15(5):e0233108 Liu S H, Bobb J F, Claus Henn B, et al. Bayesian varying coefficient kernel machine regression to assess neurodevelopmental trajectories associated with exposure to complex mixtures[J]. Statistics in Medicine, 2018, 37(30):4680-4694 Mielz[DD(-1.6mm]·[] yńska D, Siwińska E, Kapka L, et al. The influence of environmental exposure to complex mixtures including PAHs and lead on genotoxic effects in children living in Upper Silesia, Poland[J]. Mutagenesis, 2006, 21(5):295-304 Dudka I, Kossowska B, Senhadri H, et al. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research:A preliminary study[J]. Environment International, 2014, 68:71-81 Wang Y, Zhang P, Chen X, et al. Multiple metal concentrations and gestational diabetes mellitus in Taiyuan, China[J]. Chemosphere, 2019, 237:124412 Duan W W, Xu C, Liu Q, et al. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality:A population-based cohort study[J]. Environmental Pollution, 2020, 263(Pt A):114630 Adedara I A, Adegbosin A N, Abiola M A, et al. Neurobehavioural and biochemical responses associated with exposure to binary waterborne mixtures of zinc and nickel in rats[J]. Environmental Toxicology and Pharmacology, 2020, 73:103294 Kadeyala P K, Sannadi S, Gottipolu R R. Alterations in apoptotic caspases and antioxidant enzymes in arsenic exposed rat brain regions:Reversal effect of essential metals and a chelating agent[J]. Environmental Toxicology and Pharmacology, 2013, 36(3):1150-1166 Saritha S, Davuljigari C B, Kumar K P, et al. Effects of combined arsenic and lead exposure on the brain monoaminergic system and behavioral functions in rats:Reversal effect of MiADMSA[J]. Toxicology and Industrial Health, 2019, 35(2):89-108 Rai A, Maurya S K, Khare P, et al. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture:Synergistic action of metal mixture in glial and neuronal functions[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2010, 118(2):586-601 Zhou F K, Xie J, Zhang S Y, et al. Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway[J]. Ecotoxicology and Environmental Safety, 2018, 163:674-684 Bizarro P, Acevedo S, Niño-Cabrera G, et al. Ultrastructural modifications in the mitochondrion of mouse Sertoli cells after inhalation of lead, cadmium or lead-cadmium mixture[J]. Reproductive Toxicology, 2003, 17(5):561-566 Adedara I A, Abolaji A O, Awogbindin I O, et al. Suppression of the brain-pituitary-testicular axis function following acute arsenic and manganese co-exposure and withdrawal in rats[J]. Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements (GMS), 2017, 39:21-29 Száková J, Zídek V, Miholová D. Influence of elevated content of cadmium and arsenic in diet containing feeding yeast on organisms of rats[J]. Czech Journal of Animal Science, 2009, 54(1):1-9 Wildemann T M, Weber L P, Siciliano S D. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats[J]. Journal of Applied Toxicology:JAT, 2015, 35(8):918-926 Wildemann T M, Siciliano S D, Weber L P. The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio[J]. Toxicology, 2016, 339:1-8 Arbi S, Oberholzer H M, van Rooy M J, et al. Effects of chronic exposure to mercury and cadmium alone and in combination on the coagulation system of Sprague-Dawley rats[J]. Ultrastructural Pathology, 2017, 41(4):275-283 Basha D C, Basha S S, Reddy G R. Lead-induced cardiac and hematological alterations in aging Wistar male rats:Alleviating effects of nutrient metal mixture[J]. Biogerontology, 2012, 13(4):359-368 Bouraoui Z, Banni M, Ghedira J, et al. Evaluation of enzymatic biomarkers and lipoperoxidation level in Hediste diversicolor exposed to copper and benzo[a] pyrene[J]. Ecotoxicology and Environmental Safety, 2009, 72(7):1893-1898 Wu H F, Wang W X. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis[J]. Aquatic Toxicology, 2010, 100(4):339-345 Lu C L, Svoboda K R, Lenz K A, et al. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans[J]. Environmental Science and Pollution Research International, 2018, 25(16):15378-15389 Tang B W, Tong P, Xue K S, et al. High-throughput assessment of toxic effects of metal mixtures of cadmium (Cd), lead (Pb), and manganese (Mn) in nematode Caenorhabditis elegans[J]. Chemosphere, 2019, 234:232-241 Heffern K, Tierney K, Gallagher E P. Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 201:83-90 Driessnack M K, Jamwal A, Niyogi S. Effects of chronic waterborne cadmium and zinc interactions on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas)[J]. Ecotoxicology and Environmental Safety, 2017, 140:65-75 Arini A, Gourves P Y, Gonzalez P, et al. Metal detoxification and gene expression regulation after a Cd and Zn contamination:An experimental study on Danio rerio[J]. Chemosphere, 2015, 128:125-133 Pérez E, Hoang T C. Responses of Daphnia magna to chronic exposure of cadmium and nickel mixtures[J]. Chemosphere, 2018, 208:991-1001 Moyson S, Vissenberg K, Fransen E, et al. Mixture effects of copper, cadmium, and zinc on mortality and behavior of Caenorhabditis elegans[J]. Environmental Toxicology and Chemistry, 2018, 37(1):145-159 Moyson S, Town R M, Vissenberg K, et al. The effect of metal mixture composition on toxicity to C. elegans at individual and population levels[J]. PLoS One, 2019, 14(6):e0218929 Garrick M D, Dolan K G, Horbinski C, et al. DMT1:A mammalian transporter for multiple metals[J]. BioMetals, 2003, 16(1):41-54 Castaldo G, Flipkens G, Pillet M, et al. Antagonistic bioaccumulation of waterborne Cu(Ⅱ) and Cd(Ⅱ) in common carp (Cyprinus carpio) and effects on ion-homeostasis and defensive mechanisms[J]. Aquatic Toxicology, 2020, 226:105561 Cobbina S J, Xu H, Zhao T, et al. A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos[J]. Fish & Shellfish Immunology, 2015, 47(2):1032-1042 Lanier C, Bernard F, Dumez S, et al. Combined toxic effects and DNA damage to two plant species exposed to binary metal mixtures (Cd/Pb)[J]. Ecotoxicology and Environmental Safety, 2019, 167:278-287 Alonso-Castro A J, Carranza-Alvarez C, Alfaro-De la Torre M C, et al. Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4):688-696 Israr M, Jewell A, Kumar D, et al. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii[J]. Journal of Hazardous Materials, 2011, 186(2-3):1520-1526 Martinez S, Sáenz M E, Alberdi J L, et al. Comparative ecotoxicity of single and binary mixtures exposures of cadmium and zinc on growth and biomarkers of Lemna gibba[J]. Ecotoxicology, 2020, 29(5):571-583 赵晓祥, 冯璐, 王宇晖. 锌、镉单一及复合胁迫下番茄幼苗生理响应及联合毒性的研究[J]. 安全与环境学报, 2020, 20(3):1176-1184 Zhao X X, Feng L, Wang Y H. Physiological responses and joint toxicity of tomato seedlings under single and combined stress of zinc and cadmium[J]. Journal of Safety and Environment, 2020, 20(3):1176-1184(in Chinese)
季冬雪, 华珞, 王学东, 等. Cu-Cd、Zn-Cd、Cu-Zn复合污染对水稻毒性和重金属吸收的影响[J]. 环境污染与防治, 2018, 40(10):1141-1146 Ji D X, Hua L, Wang X D, et al. The effects of combined heavy metals (Cu-Cd, Zn-Cd, Cu-Zn) on the toxicity and uptake of metal elements in rice[J]. Environmental Pollution & Control, 2018, 40(10):1141-1146(in Chinese)
Domingo-Relloso A, Grau-Perez M, Galan-Chilet I, et al. Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain:The Hortega Study[J]. Environment International, 2019, 123:171-180 Davuljigari C B, Gottipolu R R. Late-life cardiac injury in rats following early life exposure to lead:Reversal effect of nutrient metal mixture[J].Cardiovascular Toxicology, 2020, 20(3):249-260 Huang M Y, Duan R Y, Yin J W, et al. Individual and mixture toxicity of chromium and copper in development, oxidative stress, lipid metabolism and apoptosis of Bufo gargarizans embryos[J]. Aquatic Toxicology, 2020, 229:105671 刘祥, 王敏, 陈求稳, 等. 典型重金属胁迫对日本沼虾的氧化损伤及交互作用[J]. 生态毒理学报, 2017, 12(6):116-126 Liu X, Wang M, Chen Q W, et al. Oxidative damage and interaction induced by typical heavy metals in waters on the Macrobranchium nipponense[J]. Asian Journal of Ecotoxicology, 2017, 12(6):116-126(in Chinese)
Zhang C, Ge J, Lv M W, et al. Selenium prevent cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress[J]. Environmental Pollution, 2020, 260:113873 Wang Y F, Su H, Song X, et al. Luteolin inhibits multi-heavy metal mixture-induced HL7702 cell apoptosis through downregulation of ROS-activated mitochondrial pathway[J]. International Journal of Molecular Medicine, 2018, 41(1):233-241 Wu B, Liu Z T, Xu Y, et al. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta)[J]. Ecotoxicology and Environmental Safety, 2012, 81:122-126 de Oliveira L F, Santos C, Risso W E, et al. Triple-mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater neotropical fish[J]. Environmental Toxicology and Chemistry, 2018, 37(6):1749-1756 Boukadida K, Cachot J, Morin B, et al. Moderate temperature elevation increase susceptibility of early-life stage of the Mediterranean mussel, Mytilus galloprovincialis to metal-induced genotoxicity[J]. The Science of the Total Environment, 2019, 663:351-360 张迎梅, 王叶菁, 虞闰六, 等. 重金属Cd2+、Pb2+和Zn2+对泥鳅DNA损伤的研究[J]. 水生生物学报, 2006, 30(4):399-403 Zhang Y M, Wang Y J, Yu R L, et al. Effects of heavy metals Cd2+, Pb2+ and Zn2+ on DNA damage of loach Misgurnus anguillicandatus[J]. Acta Hydrobiologica Sinica, 2006, 30(4):399-403(in Chinese)
Driessnack M K, Jamwal A, Niyogi S. Effects of chronic exposure to waterborne copper and nickel in binary mixture on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas)[J]. Chemosphere, 2017, 185:964-974 Castaldo G, Pillet M, Slootmaekers B, et al. Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio[J]. Aquatic Toxicology, 2020, 218:105363 张融, 范文宏, 唐戈, 等. 水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J]. 生态毒理学报, 2008, 3(3):286-290 Zhang R, Fan W H, Tang G, et al. A preliminary study on joint toxic effects of Cd and Zn on Daphnia magna[J]. Asian Journal of Ecotoxicology, 2008, 3(3):286-290(in Chinese)
Martínez-Pacheco M, Hidalgo-Miranda A, Romero-Córdoba S, et al. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects[J]. Gene, 2014, 533(2):508-514 -

计量
- 文章访问数: 5773
- HTML全文浏览数: 5773
- PDF下载数: 187
- 施引文献: 0