植物影响空气中持久性有机污染物的研究进展

李彤彤, 谢淑雅, 刘颖. 植物影响空气中持久性有机污染物的研究进展[J]. 环境化学, 2020, (4): 891-899. doi: 10.7524/j.issn.0254-6108.2019101104
引用本文: 李彤彤, 谢淑雅, 刘颖. 植物影响空气中持久性有机污染物的研究进展[J]. 环境化学, 2020, (4): 891-899. doi: 10.7524/j.issn.0254-6108.2019101104
LI Tongtong, XIE Shuya, LIU Ying. Research progress on effects of vegetation on persistent organic pollutants(POPs) in the air[J]. Environmental Chemistry, 2020, (4): 891-899. doi: 10.7524/j.issn.0254-6108.2019101104
Citation: LI Tongtong, XIE Shuya, LIU Ying. Research progress on effects of vegetation on persistent organic pollutants(POPs) in the air[J]. Environmental Chemistry, 2020, (4): 891-899. doi: 10.7524/j.issn.0254-6108.2019101104

植物影响空气中持久性有机污染物的研究进展

    通讯作者: 李彤彤, E-mail: l_tongtong@126.com 刘颖, E-mail: liu_ying@tongji.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(21876126)资助.

Research progress on effects of vegetation on persistent organic pollutants(POPs) in the air

    Corresponding authors: LI Tongtong, l_tongtong@126.com ;  LIU Ying, liu_ying@tongji.edu.cn
  • Fund Project: Supported by the General Program of National Natural Science Foundation of China (21876126).
  • 摘要: 持久性有机污染物(POPs)在植物与空气两相界面之间存在动态交换过程,一方面,植物叶片吸附、吸收空气中的POPs,净化了空气,并将其转移到食物链和土壤等其它环境介质中;另一方面,植物叶片通过挥发使其吸附的POPs重新回到空气中,最终对全球范围内POPs的循环和环境归趋产生重要影响.本文综述了植物与空气中POPs的动态交换过程,分析了影响植物吸附和挥发POPs的主要因素,包括POPs的理化性质、植物特征和环境条件.同时,就城市绿地对空气中POPs浓度水平的影响展开讨论,由于该过程受多种因素共同影响,植被清除的POPs是否足以改善空气质量仍有争议,其中影响机制有待深入研究.此外,本文总结了植物中POPs的检测技术,传统检测技术灵敏性和准确性高,而原位检测技术可以直接观察活体植物中POPs的吸收、迁移、存储等环境行为.最后,本文探讨了现有研究的不足和未来发展的方向,以期为今后研究植物-空气界面过程以及POPs多介质环境行为提供理论和技术参考.
  • 加载中
  • [1] KUO Y C, CHEN Y C, LIN M Y, et al. Ambient air concentrations of PCDD/Fs, coplanar PCBs, PBDD/Fs, and PBDEs and their impacts on vegetation and soil[J]. International Journal of Environmental Science and Technology, 2014, 12:2997-3008.
    [2] LIU Y, GAO Y, YU N, et al. Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China:Emission from on-road vehicles and gas-particle partitioning[J]. Chemosphere, 2015, 134:52-59.
    [3] KLEES M, HOMBRECHER K, GLADTKE D. Polychlorinated biphenyls in the surrounding of an e-waste recycling facility in North-Rhine Westphalia:Levels in plants and dusts, spatial distribution, homologue pattern and source identification using the combination of plants and wind direction data[J]. Science of the Total Environment, 2017, 603-604:606-615.
    [4] DE LA TORRE A, BARBAS B, SANZ P, et al. Traditional and novel halogenated flame retardants in urban ambient air:Gas-particle partitioning, size distribution and health implications[J]. Science of the Total Environment, 2018, 630:154-163.
    [5] FANG Y Y, NIE Z Q, DIE Q Q, et al. Organochlorine pesticides in soil, air, and vegetation at and around a contaminated site in southwestern China:Concentration, transmission, and risk evaluation[J]. Chemosphere, 2017, 178:340-349.
    [6] CABRERIZO A, DACHS J, JONES K C, et al. Soil-Air exchange controls on background atmospheric concentrations of organochlorine pesticides[J]. Atmospheric Chemistry and Physics, 2011, 11:12799-12811.
    [7] CABRERIZO A, MUIR D C G, DE SILVA A O, et al. Legacy and emerging persistent organic pollutants (POPs) in terrestrial compartments in the high arctic:Sorption and secondary sources[J]. Environmental Science & Technology, 2018, 52:14187-14197.
    [8] WANG X P, WANG C F, ZHU T T, et al. Persistent organic pollutants in the polar regions and the Tibetan Plateau:A review of current knowledge and future prospects[J]. Environmental Pollution, 2019, 248:191-208.
    [9] ST-AMAND A D, MAYER P M, BLAIS J M. Prediction of SVOC vegetation and atmospheric concentrations using calculated deposition velocities[J]. Environment International, 2009, 35:851-855.
    [10] KUANG Y W, LI J, HOU E Q. Lipid-content-normalized polycyclic aromatic hydrocarbons (PAHs) in the xylem of conifers can indicate historical changes in regional airborne PAHs[J]. Environmental Pollution, 2015, 196:53-59.
    [11] ODABASI M, DUMANOGLU Y, OZGUNERGE FALAY E, et al. Investigation of spatial distributions and sources of persistent organic pollutants (POPs) in a heavily polluted industrial region using tree components[J]. Chemosphere, 2016, 160:114-125.
    [12] NIZZETTO L, PASTORE C, LIU X, et al. Accumulation parameters and seasonal trends for PCBs in temperate and boreal forest plant species[J]. Environmental Science & Technology, 2008, 42:5911-5916.
    [13] TERZAGHI E, ZACCHELLO G, SCACCHI M, et al. Towards more ecologically realistic scenarios of plant uptake modelling for chemicals:PAHs in a small forest[J]. Environmental Science & Technology, 2015, 505:329-337.
    [14] LIU X, WANG S, JIANG Y S, et al. Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island[J]. Environmental Pollution, 2017, 227:57-63.
    [15] LIU X, LI J, ZHENG Q, et al. Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs:A case study of Mt. Gongga, eastern Tibetan Plateau[J]. Environmental Science & Technology, 2014, 48:14377-14385.
    [16] YLI-PELKONEN V, VIIPPOLA V, RANTALAINEN A L, et al. The impact of urban trees on concentrations of PAHs and other gaseous air pollutants in Yanji, Northeast China[J]. Atmospheric Environment, 2018, 192:151-159.
    [17] BURKEN J G, SCHNOOR J L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees[J]. Environmental Science & Technology, 1997, 32:3379-3385.
    [18] BACCI E, CEREJEIRA M J, GAGGI C, et al. Bioconcentration of organic chemical vapours in plant leaves:The azalea model[J]. Chemosphere, 1990, 21(4-5):525-535.
    [19] MCLACHLAN M S, HORSTMANN M, Forests as filters of airborne organic pollutants:A model[J]. Environmental Science & Technology, 1998, 32(3):413-420.
    [20] 王传飞, 王小萍, 龚平, 等. 植被富集持久性有机污染物研究进展[J]. 地理科学进展, 2013, 32(10):1555-1566.

    WANG C F, WANG X P, GONG P. Research progress in uptake of persistent organic pollutants by plants[J]. Progress in Geography, 2013, 32(10):1555-1566(in Chinese).

    [21] TERZAGHI E, MORSELLI M, SEMPLICE M, et al. SoilPlusVeg:An integrated air-plant-litter-soil model to predict organic chemical fate and recycling in forests[J]. Science of the Total Environment, 2017, 595:169-177.
    [22] 郑丽荣, 韩昊. 持久性有机污染物土气交换过程及采样技术的研究进展[J]. 四川环境, 2017, 36(4):154-157.

    ZHENG L R, HAN H. A review of research on processes and techniques of air-soil exchange of persistent organic pollutants[J]. Sichuan Environment, 2017, 36(4):154-157(in Chinese).

    [23] FENG D L, LIU Y, GAO Y, et al. Bulk deposition of polycyclic aromatic hydrocarbons in Shanghai:Temporal and spatial variation, and global comparison[J]. Environmental Pollution, 2017, 230:639-647.
    [24] DESALME D, BINET P, CHIAPUSIO G. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants[J]. Environmental Science & Technology, 2013, 47:3967-3981.
    [25] KUANG Y W, ZHOU G Y, WEN D Z, et al. Analysis of polycyclic aromatic hydrocarbons in tree-rings of Masson pine (Pinus massoniana L.) from two industrial sites in the Pearl River Delta, South China[J]. Journal of Environmental Monitoring, 2011, 13:2630-2637.
    [26] BEDOS C, CELLIER P, CALVET R, et al. Mass transfer of pesticides into the atmosphere by volatilization from soils and plants:Overview[J]. Agronomie, 2002, 22(1):21-33.
    [27] HOUBRAKEN M, VAN DEN BERG F, BUTLER ELLIS C M, et al. Volatilisation of pesticides under field conditions:Inverse modelling and pesticide fate models[J]. Pest Management Science, 2016, 72(7):1309-1321.
    [28] HARMENS H, FOAN L, SIMON V, et al. Terrestrial mosses as biomonitors of atmospheric POPs pollution:A review[J]. Environmental Pollution, 2013, 173:245-254.
    [29] STAMAND A, MAYER P, BLAIS J. Seasonal trends in vegetation and atmospheric concentrations of PAHs and PBDEs near a sanitary landfill[J]. Atmospheric Environment, 2008, 42:2948-2958.
    [30] ST-AMAND A D, MAYER P M, BLAIS J M. Modeling PAH uptake by vegetation from the air using field measurements[J]. Atmospheric Environment, 2009, 43:4283-4288.
    [31] BARBER J L, THOMAS G O, KERSTIENS G, et al. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs[J]. Environmental Pollution, 2004, 128:99-138.
    [32] SU Y, WANIA F, HARNER T, et al. Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest[J]. Environmental Science & Technology, 2007, 41:534-540.
    [33] WANG Z, CHEN J, YANG P, et al. Distribution of PAHs in pine (Pinus thunbergii) needles and soils correlates with their gas-particle partitioning[J]. Environmental Science & Technology, 2009, 43:1336-1341.
    [34] KEYTE I, WILD E, DENT J, et al. Investigating the foliar uptake and within-leaf migration of phenanthrene by moss (Hypnum cupressiforme) using two-photon excitation microscopy with autofluorescence[J]. Environmental Science & Technology, 2009, 43(15):5755-5761.
    [35] LICHIHEB N, PERSONNE E, BEDOS C, et al. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants[J]. Science of the Total Environment, 2016, 550:1022-1031.
    [36] ZHAO X G, HE M, SHANG H B, et al. Biomonitoring polycyclic aromatic hydrocarbons by Salix matsudana leaves:A comparison with the relevant air content and evaluation of environmental parameter effects[J]. Atmospheric Environment, 2018, 181:47-53.
    [37] SALAMOVA A, HITTES R A. Brominated and chlorinated flame retardants in tree bark from around the globe[J]. Environmental Science & Technology, 2012, 47(1):349-354.
    [38] OISHI Y. Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan[J]. Environmental Pollution, 2018, 234:330-338.
    [39] ODABASI M, FALAY E O, TUNA G, et al. Biomonitoring the spatial and historical variations of persistent organic pollutants (POPs) in an industrial region[J]. Environmental Science & Technology, 2015, 49:2105-2114.
    [40] CHROPEÑOVÁ M, GREGUŠKOVÁ E K, KARÁSKOVÁ P, et al. Pine needles and pollen grains of Pinus mugo Turra-A biomonitoring tool in high mountain habitats identifying environmental contamination[J]. Ecological Indicators, 2016, 66:132-142.
    [41] TIAN L, YIN S, MA Y G, et al. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves:Morphological characteristics have the greatest impact[J]. Science of the Total Environment, 2019, 652:1149-1155.
    [42] LI Q Q, CHEN B L. Organic pollutant clustered in the plant cuticular membranes:Visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy[J]. Environmental Science & Technology, 2014, 48:4774-4781.
    [43] DE NICOLA F, CONCHA GRANA E, LOPEZ MAHIA P, et al. Evergreen or deciduous trees for capturing PAHs from ambient air? A case study[J]. Environmental Pollution, 2017, 221:276-284.
    [44] HUANG S J, DAI C H, ZHOU Y Y, et al. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere:A review[J]. Environmental Science and Pollution Research, 2018, 25:16548-16566.
    [45] ODABASI M, CETIN E, SOFUOGLU A. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature:Application to gas-particle partitioning in an urban atmosphere[J]. Atmospheric Environment, 2006, 40:6615-6625.
    [46] HARNER T, SHOEIB M. Measurements of octanol- air partition coefficients (KOA) for polybrominated diphenyl ethers (PBDEs):Predicting partitioning in the environment[J]. Journal of Chemical & Engineering Data, 2002, 47(2):228-232.
    [47] GRASSI G, MAGNANI F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees[J]. Plant, Cell & Environment, 2005, 28(7):834-849.
    [48] CAMEJO D, RODRíGUEZ P, ANGELES MORALES M, et al. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility[J]. Journal of Plant Physiology, 2005, 162:281-289.
    [49] BAO Z W, HABERER C M, MAIER U, et al. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system[J]. Science of the Total Environment, 2016, 569-570:159-167.
    [50] NIZZETTO L, CASSANI C, DI GUARDO A. Deposition of PCBs in mountains:The forest filter effect of different forest ecosystem types[J]. Ecotoxicology and Environmental Safety, 2006, 63:75-83.
    [51] WANIA F, MCLACHLAN M S. Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model[J]. Environmental Science & Technology, 2001, 35(3):582-590.
    [52] CHOI S D, STAEBLER R M, LI H, et al. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy[J]. Atmospheric Chemistry and Physics, 2008, 8(14):4105-4113.
    [53] LIU Y, XIE S Y, ZHENG L R, et al. Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling:Vertical distribution, vegetation influence and diffusive flux[J]. Science of the Total Environment, 2019, 689:734-742.
    [54] TATO L, TREMOLADA P, BALLABIO C, et al. Seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps[J]. Environmental Pollution, 2011, 159:2656-2664.
    [55] WANG W T, SIMONICH S, GIRI B, et al. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China[J]. Science of the Total Environment, 2011, 409:2942-2950.
    [56] TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect:Role of leaves in capturing/releasing air particulate matter and its associated PAHs[J]. Atmospheric Environment, 2013, 74:378-384.
    [57] YOGUI G T, SERICANO J L, MONTONE R C. Accumulation of semivolatile organic compounds in Antarctic vegetation:A case study of polybrominated diphenyl ethers[J]. Science of the Total Environment, 2011, 409:3902-3908.
    [58] AL-DABBAS M A, ALI L A, AFAJ A H. Determination of heavy metals and polycyclic aromatic hydrocarbon concentrations in soil and in the leaves of plant (Eucalyptus) of selected locations at Kirkuk-Iraq[J]. Arabian Journal of Geosciences, 2015, 8(6):3743-3753.
    [59] JANHäLL S Review on urban vegetation and particle air pollution-Deposition and dispersion[J]. Atmospheric Environment, 2015, 105:130-137.
    [60] SALMOND J A, WILLIAMS D E, LAING G, et al. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon[J]. Science of the Total Environment, 2013, 443:287-298.
    [61] LI Q L, YANG K, WANG Y, et al. Environmental behaviour of polychlorinated biphenyls in a paddy field:Impact factors and canopy effects[J]. Science of the Total Environment, 2018, 637-638:50-57.
    [62] WANG Y, WANG S R, LUO C L, et al. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers[J]. Environmental Pollution, 2015, 200:35-41.
    [63] PENG C, OUYANG Z Y, WANG M E, et al. Vegetative cover and PAHs accumulation in soils of urban green space[J]. Environmental Pollution, 2012, 161:36-42.
    [64] SU Y, WANIA F. Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic?[J]. Environmental Science & Technology, 2005, 39(18):7185-7193.
    [65] VIIPPOLA V, RANTALAINEN A L, YLI-PELKONEN V, et al. Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter——Exploratory study[J]. Environmental Pollution, 2016, 208:233-240.
    [66] KUOPPAMAKI K, SETALA H, RANTALAINEN A L, et al. Urban snow indicates pollution originating from road traffic[J]. Environmental Pollution, 2014, 195:56-63.
    [67] CHAI M W, LI R L, SHI C, et al. Contamination of polybrominated diphenyl ethers (PBDEs) in urban mangroves of Southern China[J]. Science of the Total Environment, 2019, 646:390-399.
    [68] BAKKER M I, KOERSELMAN J W, TOLLS J, et al. Localization of deposited polycyclic aromatic hydrocarbons in leaves of Plantago[J]. Environmental Toxicology and Chemistry:An International Journal, 2001, 20(5):1112-1116.
    [69] YANG B, LIU S, LIU Y, et al. PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China[J]. Science of the Total Environment, 2017, 574:358-368.
    [70] 王萍, 朱亚先, 张勇. 双光子激光共焦扫描显微技术在环境化学中的应用及展望[J]. 分析化学, 2008, 36:1477-1452. WANG P, ZHU Y X, ZHANG Y. Scanning microscopy in environmental chemistry[J]. Chinese Journal of Analytical Chemistry, 2008

    , 36:1477-1452(in Chinese).

    [71] WILD E, DENT J, BARBER J L, et al. A novel analytical approach for visualizing and tracking organic chemicals in plants[J]. Environmental Science & Technology, 2004, 38(15):4195-4199.
    [72] WILD E, DENT J, THOMAS G O, et al. Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:further studies utilizing two-photon excitation microscopy[J]. Environmental Science & Technology, 2006, 40:907-916.
    [73] 杨亚男, 孙海峰, 朱亚先, 等. 激光诱导纳秒时间分辨荧光法原位测定吸附于红树叶片表面的菲[J]. 分析化学, 2013, 41(10):1465-1469.

    YANG Y N, SUN H F, ZHU Y X, et al. In situ determination of phenanthrene adsorbed onto the surface of mangrove leaves using a laser-induced nanosecond time-resolved fluorescence system[J]. Chinese Journal of Analytical Chemistry, 2013, 41(10):1465-1469(in Chinese).

    [74] 孙海峰, 朱亚先, 张勇. 持久性有机污染物在大气与植物间交换过程研究进展[J]. 环境化学, 2013, 32(5):734-741.

    SUN H F, ZHU Y X, ZHANG Y. Research progress in the process of air-vegetation transfer of persistent organic pollutants (POPs)[J]. Environmental Chemistry, 2013, 32(5):734-741(in Chinese).

    [75] SUN H F, YANG Y N, ZHU Y X, et al. In situ investigation of the depuration of fluoranthene adsorbed on the leaf surfaces of living mangrove seedlings[J]. Talanta, 2013, 116:441-447.
    [76] LI R L R, TAN H D, ZHU Y X, et al. In situ simultaneous investigation of the transport of phenanthrene and fluoranthene adsorbed onto the root surfaces to tissues of mangrove seedlings[J]. Analytical Methods, 2015, 7:6828-6836.
    [77] SUN H, WANG W, GUO S, et al. In situ investigation into surfactant effects on the clearance of polycyclic aromatic hydrocarbons adsorbed onto soybean leaf surfaces[J]. Environmental Pollution, 2016, 210:330-337.
  • 加载中
计量
  • 文章访问数:  2834
  • HTML全文浏览数:  2834
  • PDF下载数:  97
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-11

植物影响空气中持久性有机污染物的研究进展

基金项目:

国家自然科学基金面上项目(21876126)资助.

摘要: 持久性有机污染物(POPs)在植物与空气两相界面之间存在动态交换过程,一方面,植物叶片吸附、吸收空气中的POPs,净化了空气,并将其转移到食物链和土壤等其它环境介质中;另一方面,植物叶片通过挥发使其吸附的POPs重新回到空气中,最终对全球范围内POPs的循环和环境归趋产生重要影响.本文综述了植物与空气中POPs的动态交换过程,分析了影响植物吸附和挥发POPs的主要因素,包括POPs的理化性质、植物特征和环境条件.同时,就城市绿地对空气中POPs浓度水平的影响展开讨论,由于该过程受多种因素共同影响,植被清除的POPs是否足以改善空气质量仍有争议,其中影响机制有待深入研究.此外,本文总结了植物中POPs的检测技术,传统检测技术灵敏性和准确性高,而原位检测技术可以直接观察活体植物中POPs的吸收、迁移、存储等环境行为.最后,本文探讨了现有研究的不足和未来发展的方向,以期为今后研究植物-空气界面过程以及POPs多介质环境行为提供理论和技术参考.

English Abstract

参考文献 (77)

目录

/

返回文章
返回