量子化学在化学品环境污染研究中的应用

彭涛, 杨滨, 徐超, 杨雷, 应光国. 量子化学在化学品环境污染研究中的应用[J]. 环境化学, 2020, (4): 876-890. doi: 10.7524/j.issn.0254-6108.2019040404
引用本文: 彭涛, 杨滨, 徐超, 杨雷, 应光国. 量子化学在化学品环境污染研究中的应用[J]. 环境化学, 2020, (4): 876-890. doi: 10.7524/j.issn.0254-6108.2019040404
PENG Tao, YANG Bin, XU Chao, YANG Lei, YING Guangguo. Application of quantum chemistry in the research of environmental pollution of chemicals[J]. Environmental Chemistry, 2020, (4): 876-890. doi: 10.7524/j.issn.0254-6108.2019040404
Citation: PENG Tao, YANG Bin, XU Chao, YANG Lei, YING Guangguo. Application of quantum chemistry in the research of environmental pollution of chemicals[J]. Environmental Chemistry, 2020, (4): 876-890. doi: 10.7524/j.issn.0254-6108.2019040404

量子化学在化学品环境污染研究中的应用

    通讯作者: 杨滨, E-mail: bin.yang@m.scnu.edu.cn
  • 基金项目:

    国家自然科学基金(41877358,21806043)和广州市科技创新发展专项资金(201804010108)资助.

Application of quantum chemistry in the research of environmental pollution of chemicals

    Corresponding author: YANG Bin, bin.yang@m.scnu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41877358, 21806043) and Science and Technology Innovation Development Program of Guangzhou, China (201804010108).
  • 摘要: 化学品的大量生产和使用对环境和人们构成生态和健康风险.近年来量子化学研究方法广泛应用于化学品环境污染过程与归趋研究,理论计算结果均得到传统实验研究的较好验证.因此,本文综述了量子化学计算在化学品环境污染研究中的诸多应用.文章首先简介了量子化学基本原理及计算内容,阐述了小分子基态及激发态、生物大分子和无机大分子的量子化学计算方法及在化学品环境污染领域中的应用,结合过渡态理论,半定量计算可以得到化学品在环境中发生的迁移转化行为,从而为化学品环境管理和风险评估提供基础数据和理论依据.
  • 加载中
  • [1] 刘建国. 中国化学品管理:现状与评估[M]. 北京:北京大学出版社,2015. LIU J G. Chemicals management in China:Profile and assessment[M]. Beijing:Peking University Press, 2015(in Chinese).
    [2] ECHA (European Chemicals Agency)-List of Pre-registered Substances[OL].[2019-04-03]. https://echa.europa.eu/de/
    [3] RAPPAPORT S M, SMITH M T. Environment and Disease Risks[J]. Science, 2010, 330:460-461.
    [4] DEBLONDE T, COSSU-LEGUILLE C, HARTEMANN P. Emerging pollutants in wastewater:A review of the literature[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6):442-448.
    [5] JUDSON R, RICHARD A, DIX D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695.
    [6] 王中钰, 陈景文, 乔显亮, 等. 面向化学品风险评价的计算(预测)毒理学[J]. 中国科学:化学, 2016, 46(2):222-240.

    WANG Z Y, CHEN J W, QIAO X L, et al. Computational toxicology:Oriented for chemicals risk assessment[J]. Scientia Sinica Chimica, 2016, 46(2):222-240(in Chinese).

    [7] NAYEBZADEH M, VAHEDPOUR M. A review on reactions of polycyclic aromatic hydrocarbons with the most abundant atmospheric chemical fragments:Theoretical and experimental data[J]. Progress in Reaction Kinetics and Mechanism, 2017, 42(3):201-220.
    [8] BULL R J, RECKHOW D A, LI X, et al. Potential carcinogenic hazards of non-regulated disinfection by-products:haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines[J]. Toxicology, 2011, 286(1-3):1-19.
    [9] DING S, CHU W. Recent advances in the analysis of nitrogenous disinfection by-products[J]. Trends in Environmental Analytical Chemistry, 2017, 14:19-27.
    [10] PETROVIC M, SREMACKI M, RADONIC J, et al. Health risk assessment of PAHs, PCBs and OCPs in atmospheric air of municipal solid waste landfill in Novi Sad, Serbia[J]. Science of the Total Environment, 2018, 644:1201-1206.
    [11] 陈景文, 王中钰, 傅志强. 环境计算化学与毒理学[M]. 北京:科学出版社,2018. CHEN J W, WANG Z Y, FU Z Q. Computational chemistry and toxicology in environmental[M]. Beijing:Science Press, 2018(in Chinese).
    [12] LILIENBLUM W, DEKANT W, FOTH H, et al. Alternative methods to safety studies in experimental animals:Role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH)[J]. Archives of Toxicology, 2008, 82(4):211-236.
    [13] SROUBKOVA L, ZAHRADNIK R. Quantum-mechanical energy calculations in chemistry[J]. Helvetica Chimica Acta, 2001, 84(6):1328-1341.
    [14] GERRATT J, COOPER D L, KARADAKOV P B, et al. Modern valence bond theory[J]. Chemical Society Reviews, 1997, 26(2):87-100.
    [15] TAWA G, MARTIN R, PRATT L. Reaction field spectral shifts with semiempirical molecular orbital theory[J]. International Journal of Quantum Chemistry, 1997, 64(2):143-155.
    [16] WHITE S R, MARTIN R L. Ab initio quantum chemistry using the density matrix renormalization group[J]. The Journal of Chemical Physics, 1999, 110(9):4127-4130.
    [17] HOLAS A, MARCH N H. Exchange and correlation in density functional theory of atoms and molecules[J]. Density Functional Theory, 1996, 180:57-106.
    [18] VEREECKEN L, GLOWACKI D R, PILLING M J. Theoretical chemical kinetics in tropospheric chemistry:Methodologies and applications[J]. Chemical Reviews, 2015, 115(10):4063-4114.
    [19] VEREECKEN L, FRANCISCO J S. Theoretical studies of atmospheric reaction mechanisms in the troposphere[J]. Chemical Society Reviews, 2012, 41(19):6259-6293.
    [20] MOELLMANN J, GRIMME S. DFT-D3 study of some molecular crystals[J]. The Journal of Physical Chemistry C, 2014, 118(14):7615-7621.
    [21] TIRADO-RIVES J, JORGENSEN W L. Performance of B3LYP density functional methods for a large set of organic molecules[J]. Journal of Chemical Theory and Computation, 2008, 4(2):297-306.
    [22] HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3):212-222.
    [23] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn:Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18):3297-3305.
    [24] RILEY K E, OP'T HOLT B T, MERZ K M. Critical assessment of the performance of density functional methods for several atomic and molecular properties[J]. Journal of Chemical Theory and Computation, 2007, 3(2):407-433.
    [25] LEE B D, ISO M, HOSOMI M, Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density[J]. Chemosphere, 2001, 42:431-435.
    [26] DE SOUZA T N V, DE CARVALHO S M L, VIEIRA M G A, et al. Adsorption of basic dyes onto activated carbon:Experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors[J]. Applied Surface Science, 2018, 448:662-670.
    [27] WANG X, YIN X, LAI X Y, et al. A theoretical study of a series of water-soluble triphenylamine photosensitizers for two-photon photodynamic therapy[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2018, 203:229-235.
    [28] AWAD M K, ABDEL-AAL M F, ATLAM F M, et al. Design, synthesis, molecular modeling, and biological evaluation of novel α-aminophosphonates based quinazolinone moiety as potential anticancer agents:DFT, NBO and vibrational studies[J]. Journal of Molecular Structure, 2018, 1173:128-141.
    [29] FLEMING S, MILLS A, TUTTLE T. Predicting the UV-vis spectra of oxazine dyes[J]. Beilstein Journal of Organic Chemistry, 2011, 7:432-441.
    [30] CHRISTY P A, PETER A J, LEE C W. Density functional theory on 13C NMR chemical shifts of fullerene[J]. Solid State Communications, 2018, 283:22-26.
    [31] HE X, ZHU T, WANG X, et al. Fragment quantum mechanical calculation of proteins and its applications[J]. Accounts of Chemical Research, 2014, 47(9):2748-2757.
    [32] KITAURA K, IKEO E, ASADA T. Fragment molecular orbital method an approximate computational method for large molecules[J]. Chemical Physics Letters, 1999, 313(3-4):701-706.
    [33] RICHARD R M, HERBERT J M. A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory[J]. The Journal Chemical Physics, 2012, 137(6):064113.
    [34] SENN H M, THIEL W. QM/MM methods for biomolecular systems[J]. Angewandte Chemie-International Edition, 2009, 48(7):1198-1229.
    [35] TUNEGA D, BUCKO T, ZAOUI A. Assessment of ten DFT methods in predicting structures of sheet silicates:Importance of dispersion corrections[J]. The Journal Chemical Physics, 2012, 137(11):114105.
    [36] EYRING H, The activated complex in chemical reactions[J]. The Journal of Chemical Physics, 1935, 3(2):107-115.
    [37] GAO Y, JI Y, LI G, et al. Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments[J]. Water Research, 2014, 49:360-370.
    [38] TRUHLAR D G, GORDON M S. From force fields to dynamics classical and quantal paths[J]. Science, 1990, 249:491-498.
    [39] TRUHLAR D G, ISAACSON A D, GARRETT B C. Generalized transition state theory[J]. Theory of Chemical Reaction Dynamics, 1985, 4:65-137.
    [40] GONG C, SUN X, ZHANG C, et al. Theoretical study on the degradation reaction of octachlorinated dibenzo-p-dioxin with atomic oxygen O(3P) in dielectric barrier discharge reactor[J]. Journal of Environmental Sciences, 2014, 26(11):2283-2289.
    [41] SHI J, QU R, FENG M, et al. Oxidative degradation of decabromodiphenyl ether (BDE 209) by Potassium permanganate:Reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations[J]. Environmental Science & Technology, 2015, 49(7):4209-4217.
    [42] Gaussian 16, Revision B.01, FRISCH M J, TRUCKS G W, SCHLEGEL, H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, SCALMANI G, BARONE V, PETERSSON G A, NAKATSUJI H, LI X, CARICATO M, MARENICH A V, BLOINO J, JANESKO B G, GOMPERTS R, MENNUCCI B, HRATCHIAN H P, ORTIZ J V, IZMAYLOV A F, SONNENBERG J L, WILLIAMS-YOUNG D, DING F, LIPPARINI F, EGIDI F, GOINGS J, PENG B, PETRONE A, HENDERSON T, RANASINGHE D, ZAKRZEWSKI V G, GAO J, REGA N, ZHENG G, LIANG W, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, VREVEN T, THROSSELL K, MONTGOMERY J A JR, PERALTA J E, OGLIARO F, BEARPARK M J, HEYD J J, BROTHERS E N, KUDIN K N, STAROVEROV V N, KEITH T A, KOBAYASHI R, NORMAND J, RAGHAVACHARI K, RENDELL A P, BURANT J C, IYENGAR S S, TOMASI J, COSSI M, MILLAM J M, KLENE M, ADAMO C, CAMMI R, OCHTERSKI J W, MARTIN R L, MOROKUMA K, FARKAS O, FORESMAN J B, FOX D J. Gaussian, Inc[Z]. Wallingford CT, 2016.
    [43] DOVESI R, ERBA A, ORLANDO R, et al. Quantum-mechanical condensed matter simulations with CRYSTAL[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2018, 8(4):e1360.
    [44] Accelrys. Material Studio, Accelrys Software Inc[Z]. San Diego:CA, 2010.
    [45] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1):558-561.
    [46] KRESSE G, HAFNER J. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775.
    [47] AHLRICHS R, BAR M, HASER M, et al. Electronic structure calculations on workstation computers:The program system Turbomole. Chemical Physics Letters, 1989, 162(3):165-169.
    [48] STEWART J J. MOPAC:A semiempirical molecular orbital program[J]. Journal of Computer-Aided Molecular Design, 1990, 4(1):1-105.
    [49] VELDE G T, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9):931-967.
    [50] GUERRA C F, SNIJDERS J G, VELDE G T, et al. Towards an order-N DFT method[J]. Theoretical Chemistry Accounts, 1998, 99(6):391-403.
    [51] CAO J, REN Q, CHEN F, et al. Comparative study on the methods for predicting the reactive site of nucleophilic reaction[J]. Science China Chemistry, 2015, 58(12):1845-1852.
    [52] PARR R G, DONNELLY R A, LEVY M, et al. Electronegativity:The density functional viewpoint[J]. The Journal of Chemical Physics, 1978, 68(8):3801-3807.
    [53] LIU S B. Conceptual density functional theory and some recent developments[J]. Acta Physico-Chimica Sinica 2009, 25(3):590-600.
    [54] FUKUI K, YONEZAWA T, SHINGU H. A molecular orbital theory of reactivity in aromatic hydrocarbons[J]. The Journal of Chemical Physics, 1952, 20(4):722-725.
    [55] EL-GAMMAL O A, AL-HOSSAINY A F, EL-BRASHY S A. Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes derived from macrocyclic schiff base[J]. Journal of Molecular Structure, 2018, 1165:177-195.
    [56] AZAZA N B, ELLEUCH S, KHEMAKHEM S, et al. Synthesis and spectral properties of coumarins derivatives fluorescence emitters:Experiment and DFT/TDDFT calculations[J]. Optical Materials, 2018, 83:138-144.
    [57] TVRKER L, ÇELIK BAYAR Ç. A DFT study on estrone-TNT interaction[J]. Zeitschrift für Anorganische Und Allgemeine Chemie, 2013, 639(10):1871-1875.
    [58] LI X H, TANG Z X. DFT study of the C-Cl bond dissociation enthalpies and electronic structure of substituted chlorobenzene compounds[J]. Journal of Structural Chemistry, 2009, 50(1):34-40.
    [59] ZHOU Z X, PARR R G. Activation hardness new index for describing the orientation of electrophilic aromatic substitution[J]. Journal of the American Chemical Society, 1990, 112(15):5720-5724.
    [60] LIU X H, ZHAO W G, WANG B L, et al. Synthesis, bioactivity and DFT structure-activity relationship study of novel 1,2,3-thiadiazole derivatives[J]. Research on Chemical Intermediates, 2012, 38(8):1999-2008.
    [61] OKULIK N, JUBERT A H. Theoretical study on the structure and reactive sites of three non-steroidal anti-inflammatory drugs:Ibuprofen, Naproxen and Tolmetin acids[J]. Journal of Molecular Structure:Theochem, 2006, 769(1-3):135-141.
    [62] AN T, AN J, GAO Y, et al. Photocatalytic degradation and mineralization mechanism and toxicity assessment of antivirus drug acyclovir:Experimental and theoretical studies[J]. Applied Catalysis B:Environmental, 2015, 164:279-287.
    [63] HIREMATH S M, SUVITHA A, PATIL N R, et al. Molecular structure, vibrational spectra, NMR, UV, NBO, NLO, HOMO-LUMO and molecular docking of 2-(4, 6-dimethyl-1-benzofuran-3-yl) acetic acid (2DBAA):Experimental and theoretical approach[J]. Journal of Molecular Structure, 2018, 1171:362-374.
    [64] ADAMO C, JACQUEMIN D. The calculations of excited-state properties with Time-Dependent Density Functional Theory[J]. Chemical Society Reviews, 2013, 42(3):845-856.
    [65] DREUW A, HEAD-GORDON M. Single-reference ab initio methods for the calculation of excited states of large molecules[J]. Chemical Reviews 2005, 105(11):4009-4037.
    [66] ZHANG X, LIU X, LIANG G, et al. Ab initio MRCI+Q study on the low-lying excited states of the PBr radical including spin-orbit coupling†[J]. Molecular Physics, 2015, 113(21):3312-3324.
    [67] ZHANG X, LIU X, LIANG G, et al. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 168:66-77.
    [68] KORAIEM A I, EL-SHAFEI A, ABDELLAH I M, et al. Theoretical and experimental spectroscopic investigation of new polymethine donor-π-acceptor cyanine dyes:Synthesis, photophysical, and TDDFT studies[J]. Journal of Molecular Structure, 2018, 1173:406-416.
    [69] THAYA KUMARI C R, NAGESHWARI M, RAMAN R G, et al. Crystal growth, spectroscopic, DFT computational and third harmonic generation studies of nicotinic acid[J]. Journal of Molecular Structure, 2018, 1163:137-146.
    [70] LI J, WANG J, ZHANG G, et al. Enhanced molecular oxygen activation of Ni2+ -doped BiO2-x nanosheets under UV, visible and near-infrared irradiation:Mechanism and DFT study[J]. Applied Catalysis B:Environmental, 2018, 234:167-177.
    [71] ROZENEL S S, AZPILCUETA C R, FLORES-LEONAR M M, et al. Ruthenium tris bipyridine derivatives and their photocatalytic activity in[4+ 2] cycloadditions. An experimental and DFT study[J]. Catalysis Today, 2018, 310:2-10.
    [72] SAFAEI J, ULLAH H, MOHAMED N A, et al. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Applied Catalysis B:Environmental, 2018, 234:296-310.
    [73] JIANG Y X, PENG Y J. Excited-state intramolecular proton transfer reaction of 3-Hydroxyflavone[J]. Journal of Cluster Science, 2015, 26(6):1983-1992.
    [74] MORI K, GOUMANS T P M. VAN LENTHE E, et al. Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin-orbit coupling[J]. Physical Chemistry Chemical Physics, 2014, 16(28):14523-14530.
    [75] JACQUEMIN D, WATHELET V, PERPETE E A, et al. Extensive TD-DFT benchmark:Singlet-excited states of organic molecules[J]. Journal of Chemical Theory and Computation, 2009, 5(9):2420-2435.
    [76] GORDON M S, FEDOROV D G, PRUITT S R, et al. Fragmentation methods:A route to accurate calculations on large systems[J]. Chemical Reviews, 2012, 112(1):632-672.
    [77] MEITEI O R, HESSELMANN A. Molecular energies from an incremental fragmentation method[J]. The Journal of Chemical Physics, 2016, 144(8):084109.
    [78] ZHANG D W, ZHANG J Z H. Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy[J]. The Journal of Chemical Physics, 2003, 119(7):3599-3605.
    [79] WANG X, LIU J, ZHANG J Z, et al. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy[J]. The Journal of Physical Chemistry A, 2013, 117(32):7149-7161.
    [80] CORNELL W, CIEPLAK P, BAYLY C, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society, 1995, 117(19):5179-5197.
    [81] SAHU N, and GADRE S R. Vibrational infrared and Raman spectra of polypeptides:Fragments-in-fragments within molecular tailoring approach[J]. The Journal of Chemical Physics, 2016, 144(11):114113.
    [82] LIU J, ZHANG J Z, HE X. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins[J]. Physical Chemistry Chemical Physics, 2016, 18(3):1864-1875.
    [83] HEYDEN A, LIN H, TRUHLAR D G. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations[J]. Journal of Physical Chemistry B, 2007, 111(9):2231-2241.
    [84] LI Y W, SUN X M, DU L K, et al. QM/MM study on the spontaneous reactivation mechanism of (±)methamidophos-inhibited-acetylcholinesterase[J]. Computational and Theoretical Chemistry, 2012, 980:108-114.
    [85] WANG J J, CHEN J F, TANG X W, et al. Catalytic mechanism for 2,3-Dihydroxybiphenyl ring cleavage by nonheme extradiol dioxygenases BphC:insights from QM/MM analysis[J]. Journal of Physical Chemistry B, 2019, 123(10):2244-2253.
    [86] 张超, 宋开慧, 钱萍, 等. 水分子在高岭石中插层行为的量子化学研究[J]. 分子科学学报, 2013, 29(2):134-141.

    ZHANG C, SONG K, QIAN P, et al. Quantum chemical study of intercalation of water molecules in kaolinite[J]. Journal of Molecular Science, 2013, 29(2):134-141(in Chinese).

    [87] 洪汉烈. 高岭石矿物表面化学的量子化学研究[J]. 武汉理工大学学报, 2005, 27(1):25-29.

    HONG H. Surface chemistry of kaolinite by quantum chemistry calculations[J]. Journal of Wuhan University of Technology, 2005, 27(1):25-29(in Chinese).

    [88] SATO H, ONO K, YAMAGISHI A, et al. First-principles studies on the elastic constants of a 1:1 layered kaolinite mineral[J]. American Mineralogist, 2005, 90(11-12):1824-1826.
    [89] ALVIM R S, MIRANDA C R. First principles characterization of silicate sites in clay surfaces[J]. Physical Chemistry Chemical Physics, 2015, 17(7):4952-4960.
    [90] 韩永华. 高岭石、蒙脱石表面性质及其分散机理的量子化学研究[D]. 北京:中国矿业大学,2017. HAN Y H. Quantum chemistry study on the surface properties and dispersion of kaolinite and montmorillonite[D]. Beijing:China University of Mining and Technology, 2017(in Chinese).
    [91] 毛丽萍, 田东旭, 郭向云. Au38团簇上小分子H2O和O2共同吸附的第一性原理研究[J]. 原子与分子物理学报, 2010, 27(1):69-75.

    MAO L, TIAN D, GUO X. First-principles study of H2O and O2 adsorption on Au38 cluster[J]. Journal of Atomic and Molecular Physics, 2010, 27(1):69-75(in Chinese).

    [92] PALACE CARVALHO A J, DORDIO A V, PRATES RAMALHO J P. A DFT study on the adsorption of benzodiazepines to vermiculite surfaces[J]. Journal of Molecular Modeling, 2014, 20(7):2336.
    [93] ZHANG K, CHEN B, MAO J, et al. Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via pi-PAHB:Sorption experiments and DFT calculations[J]. Environment Pollution, 2018, 240:342-352.
    [94] ZOU M Y, ZHANG J D, CHEN J W, et al. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water[J]. Environmental Science & Technology, 2012, 46(16):8887-8894.
    [95] WANG Y, CHEN J W, WEI X X, et al. Unveiling adsorption mechanisms of organic pollutants onto carbon nanomaterials by density functional theory computations and linear free energy relationship modeling[J]. Environmental Science & Technology, 2017, 51(20):11820-11828.
    [96] WANG Z, CHEN J W, SUN Q, et al. C60-DOM interactions and effects on C60 apparent solubility:A molecular mechanics and density functional theory study[J]. Environment International, 2011, 37(6):1078-1082.
    [97] 张馨元, 谢宏彬, 尉小旋, 等. 计算模拟掺氮碳纳米管与水中芳香类污染物的吸附作用[J]. 科学通报, 2015, 60:1796-1803. ZHANG X Y, XIE H B, WEI X X, et al. Simulating adsorption of organic pollutants on N-doped single-walled carbon nanotubes in water[J]. Chinese Science Bulletin, 2015

    , 60(19):1796-1803(in Chinese).

    [98] GARRETT B C, TRUHLAR D G, ROGER S G, et al. Improved treatment of threshold contributions in variational transition-state theory[J]. The Journal of Chemical Physics, 1980, 84(13):1730-1748.
    [99] YU W, HU J, XU F, et al. Mechanism and direct kinetics study on the homogeneous gas-phase formation of PBDD/Fs from 2-BP, 2,4-DBP, and 2,4,6-TBP as precursors[J]. Environmental Science & Technology, 2011, 45(5):1917-1925.
    [100] MA F F, XIE H B, CHEN J W. Benchmarking of DFT functionals for the kinetics and mechanisms of atmospheric addition reactions of OH radicals with phenyl and substituted phenyl-based organic pollutants[J]. International Journal of Quantum Chemistry, 2018, 118(10):e25533.
    [101] XIE H B, MA F F, WANG Y F, et al. Quantum chemical study on·Cl-initiated atmospheric degradation of monoethanolamine[J]. Environmental Science & Technology, 2015, 49(22):13246-13255.
    [102] ZHANG Q Z, GAO R, XU F, et al. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere:A computational study[J]. Environmental Science & Technology, 2014, 48(9):5051-5057.
    [103] ZENG X L, QU R J, FENG M B, et al. Photodegradation of polyfluorinated dibenzo-p-dioxins in organic solvents:Experimental and theoretical studies[J]. Environmental Science & Technology, 2016, 50(15):8128-8134.
    [104] ZHANG H Q, XIE H B, CHEN J W, et al. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions:A quantum chemical study on cephradine[J]. Environmental Science & Technology, 2015, 49(3):1552-1558.
    [105] GAO Y P, JI Y M, LI G Y, et al. Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity:influence of alkyl-chain length[J]. Water Research, 2016, 91:77-85.
    [106] DUAN A B, YU P Y, LIU F, et al. Diazo esters as dienophiles in intramolecular (4+2) cycloadditions:Computational explorations of mechanism[J]. Journal of the American Chemical Society, 2017, 139(7):2766-2770.
    [107] ZHANG S Y, CHEN J W, QIAO X L. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid.[J]. Environmental Science & Technology, 2010, 44:7484-7490.
    [108] FU Z Q, WANG Y, WANG Z Y, et al. Transformation pathways of isomeric perfluorooctanesulfonate precursors catalyzed by the active species of P450 enzymes:In silico investigation[J]. Chemical Research in Toxicology, 2015, 28(3):482-489.
    [109] JI L, ZHANG J, LIU W P, et al. Metabolism of halogenated alkanes by cytochrome P450 enzymes. Aerobic oxidation versus anaerobic reduction[J]. Chemistry-An Asian Journal, 2014, 9(4):1175-1182.
    [110] ZHANG J, JI L, AND LIU W P. In silico prediction of cytochrome p450-mediated biotransformations of xenobiotics:A case study of epoxidation[J]. Chemical Research Toxicology, 2015, 28(8):1522-1531.
    [111] PIAZZETTA P, MARINO T, RUSSO N, et al. Direct hydrogenation of carbon dioxide by an artificial reductase obtained by substituting rhodium for zinc in the carbonic anhydrase catalytic center. A mechanistic study[J]. ACS Catalysis, 2015, 5(9):5397-5409.
    [112] PIAZZETTA P, MARINO T, RUSSO N, et al. Explicit water molecules play a key role in the mechanism of rhodium-substituted human carbonic anhydrase[J]. ChemCatChem, 2017, 9(6):1047-1053.
  • 加载中
计量
  • 文章访问数:  3805
  • HTML全文浏览数:  3805
  • PDF下载数:  130
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-04

量子化学在化学品环境污染研究中的应用

    通讯作者: 杨滨, E-mail: bin.yang@m.scnu.edu.cn
  • 1. 中国科学院广州地球化学研究所, 有机地球化学国家实验室, 广州, 510640;
  • 2. 华南师范大学环境研究院, 广东省化学品污染与环境安全重点实验室, 广州, 510006;
  • 3. 华南师范大学化学与环境学院, 环境理论化学教育部重点实验室, 广州, 510006;
  • 4. 中国科学院大学, 北京, 100049
基金项目:

国家自然科学基金(41877358,21806043)和广州市科技创新发展专项资金(201804010108)资助.

摘要: 化学品的大量生产和使用对环境和人们构成生态和健康风险.近年来量子化学研究方法广泛应用于化学品环境污染过程与归趋研究,理论计算结果均得到传统实验研究的较好验证.因此,本文综述了量子化学计算在化学品环境污染研究中的诸多应用.文章首先简介了量子化学基本原理及计算内容,阐述了小分子基态及激发态、生物大分子和无机大分子的量子化学计算方法及在化学品环境污染领域中的应用,结合过渡态理论,半定量计算可以得到化学品在环境中发生的迁移转化行为,从而为化学品环境管理和风险评估提供基础数据和理论依据.

English Abstract

参考文献 (112)

目录

/

返回文章
返回