米氏凯伦藻对海水青鳉影响效应的转录组学分析
Transcriptome Analysis about Effect of Karenia mikimotoi on Oryzias melastigma
-
摘要: 近年来我国近岸米氏凯伦藻(Karenia mikimotoi)藻华频发,给当地水产养殖业带来严重的损失,但该藻在海洋生物分子水平上的影响尚不明确。本实验通过转录组学分析,探究了米氏凯伦藻对模式生物海水青鳉(Oryzias melastigma)鳃和肝脏mRNA转录水平的影响。结果发现受藻作用96 h后,青鳉鳃与肝脏中分别有508个与604个差异表达基因(differentially expressed genes, DEGs),其中上调基因分别有184个和390个,下调基因分别有324个和214个。Gene ontology (GO)功能分类结果显示DEGs多集中于生物进程和分子功能,进一步GO富集分析结果表明,米氏凯伦藻能够显著影响青鳉鳃组织中凝血酶激活受体活性、受体信号通路和离子跨膜运输等相关通路;肝脏中氧运输和结合进程相关通路也受到显著影响。Kyoto encyclopedia of genes and genomes (KEGG)功能富集分析表明鳃和肝脏组织中DEGs均显著富集于免疫系统的补体和凝血级联反应,鳃DEGs还富集在IL-17免疫信号分子和细胞因子相互作用信号转导通路;而肝脏DEGs还富集在脂质、氨基酸代谢通路。此外,免疫因子serpine1、hsp90b1、bcl2l1在鳃中均被显著抑制,而凝血因子f2、f5、plg在肝脏中均被显著上调。实验结果表明米氏凯伦藻可能对海水青鳉鳃造成了一定程度的氧化损伤,也可能通过激活IL-17信号通路导致免疫炎症的发生。同时该藻还导致海水青鳉肝脏纤溶系统被激活,代谢功能发生变化。Abstract: In recent years, harmful algal blooms caused by Karenia mikimotoi have occurred frequently in coastal waters of China, and caused huge financial losses to local aquaculture industry. However, its effect on marine organisms at molecular level is still unclear. In this work, transcriptome analysis was used to explore the effects of K. mikimotoi on mRNA transcription in gill and liver of model organism marine medaka (Oryzias melastigma). Results showed that 508 and 604 differentially expressed genes (DEGs) were detected in gill and liver after 96 h treatment, in which 184 and 390 DEGs were up-regulated, while 324 and 214 DEGs were down-regulated, respectively. Gene ontology (GO) functional classification showed that DEGs in both gill and liver were mainly concentrated in biological process and molecular function. Further GO enrichment analysis showed that K. mikimotoi could significantly affect the activities of thrombin-activated receptors, receptor signal pathway and ion transmembrane transport in gill of O. melastigma, as well as oxygen transport and binding pathways in liver. Kyoto encyclopedia of genes and genomes (KEGG) functional enrichment analysis showed that DEGs were significantly enriched in complement and coagulation cascade of immune system in both gill and liver, DEGs in gill were also enriched in IL-17 immune signal molecule and cytokine interaction signal transduction pathway, while DEGs were also enriched in lipid and amino acid metabolic pathway in liver. In addition, immune factors like serpine1, hsp90b1 and bcl2l1 were significantly inhibited by K. mikimotoi in gill of O. melastigma, while coagulation factors, such as f2, f5 and plg, were significantly up-regulated in liver. Results indicated that K. mikimotoi might cause a certain degree of oxidative damage to the gill of O. melastigma, which might be related to immune inflammation caused by activating IL-17 signal pathway. Results also indicated that K. mikimotoi could activate fibrinolytic system in liver and change its metabolic function.
-
Key words:
- Karenia mikimotoi /
- Oryzias melastigma /
- influence effect /
- transcriptome analysis /
- immune
-
-
Sha J, Xiong H Y, Li C J, et al. Harmful algal blooms and their eco-environmental indication[J]. Chemosphere, 2021, 274:129912 李晓东. 米氏凯伦藻(福建株)毒性效应与毒理机制的研究[D]. 北京:中国科学院大学, 2018:1-10Li X D. Study on toxic effects and toxicological mechanism of Karenia michaeli (Fujian strain)[D].Beijing:University of Chinese Academy of Sciences, 2018:1 -10(in Chinese)
孙科. 米氏凯伦藻(Karenia mikimotoi)对海洋生物毒性的实验研究[D]. 北京:中国科学院研究生院, 2010:1-7Sun K. The experimental study on the toxicity of Karenia mikimotoi to marine animals[D]. Beijing:Graduate School of Chinese Academy of Sciences, 2010:1 -7(in Chinese)
周名江, 于仁成. 有害赤潮的形成机制、危害效应与防治对策[J]. 自然杂志, 2007, 29(2):72-77 , 125Zhou M J, Yu R C. Mechanisms and impacts of harmful algal blooms and the countmeasures[J]. Chinese Journal of Nature, 2007, 29(2):72-77, 125(in Chinese)
Ho J C, Michalak A M, Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s[J]. Nature, 2019, 574(7780):667-670 Xiao X, Agustí S, Pan Y R, et al. Warming amplifies the frequency of harmful algal blooms with eutrophication in Chinese coastal waters[J]. Environmental Science & Technology, 2019, 53(22):13031-13041 Xu H, Paerl H W, Qin B, et al. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China[J]. Environmental Science & Technology, 2015, 49(2):1051-1059 Yan T, Li X D, Tan Z J, et al. Toxic effects, mechanisms, and ecological impacts of harmful algal blooms in China[J]. Harmful Algae, 2022, 111:102148 Li X D, Yan T, Yu R C, et al. A review of Karenia mikimotoi:Bloom events, physiology, toxicity and toxic mechanism[J]. Harmful Algae, 2019, 90:101702 国家海洋局. 2005年中国海洋灾害公报[R]. 北京:国家海洋局, 2005 国家海洋局. 2012年中国海洋灾害公报[R]. 北京:国家海洋局, 2012 林佳宁. 东海大规模赤潮危害的现场及实验研究[D]. 北京:中国科学院大学, 2015:39-45Lin J N. Field and experimental study on the harm of large-scale red tide in the East China Sea[D]. Beijing:University of Chinese Academy of Sciences, 2015:39 -45(in Chinese)
张勇, 杨维东, 李宏业, 等. 米氏凯伦藻对蒙古裸腹溞的毒性及致毒途径分析[J]. 生态毒理学报, 2011, 6(1):94-98 Zhang Y, Yang W D, Li H Y, et al. Toxicity analysis of Karenia mikimotoi to Moina mongolica[J]. Asian Journal of Ecotoxicology, 2011, 6(1):94-98(in Chinese)
孙军, 宋书群, 徐兆礼, 等. 东海米氏凯伦藻水华中中华哲水蚤的选择性摄食[J]. 海洋与湖沼, 2007, 38(6):536-541 Sun J, Song S Q, Xu Z L, et al. The selective grazing of Calanus sinicus during a Karenia mikimotoi bloom in the East China Sea[J]. Oceanologia et Limnologia Sinica, 2007, 38(6):536-541(in Chinese)
O'Boyle S, McDermott G, Silke J, et al. Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland[J]. Harmful Algae, 2016, 53:77-85 Zhang P P, Song X X, Zhang Y, et al. Assessing the effect of modified clay on the toxicity of Karenia mikimotoi using marine medaka (Oryzias melastigma) as a model organism[J]. Toxics, 2022, 10(3):105 Sola F, Masoni A, Fossat B, et al. Toxicity of fatty acid 18:5n3 from Gymnodinium cf. mikimotoi:Ⅰ. Morphological and biochemical aspects on Dicentrarchus labrax gills and intestine[J]. Journal of Applied Toxicology, 1999, 19(4):279-284 Hégaret H, da Silva P M, Wikfors G H, et al. In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs[J]. Cell Biology and Toxicology, 2011, 27(4):249-266 Wang X J, Feng X Q, Zhuang Y, et al. Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi[J]. Harmful Algae, 2019, 81:1-9 Niu X Q, Xu S N, Yang Q Y, et al. Toxic effects of the dinoflagellate Karenia mikimotoi on zebrafish (Danio rerio) larval behavior[J]. Harmful Algae, 2021, 103:101996 Li X D, Yan T, Zhang Q C, et al. Inhibition to crucial enzymes in the lethal effects of the dinoflagellate Karenia mikimotoi on the rotifer Brachionus plicatilis[J]. Marine Environmental Research, 2020, 157:104866 De Rijcke M, van Acker E, Nevejan N, et al. Toxic dinoflagellates and Vibrio spp. act independently in bivalve larvae[J]. Fish & Shellfish Immunology, 2016, 57:236-242 Bentley D R, Balasubramanian S, Swerdlow H P, et al. Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature, 2008, 456(7218):53-59 Sun F Y, Liu S K, Gao X Y, et al. Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome[J]. PLoS One, 2013, 8(7):e68452 Lin W, Guo H H, Wang L K, et al. Waterborne microcystin-LR exposure induced chronic inflammatory response via MyD88-dependent toll-like receptor signaling pathway in male zebrafish[J]. The Science of the Total Environment, 2020, 702:134969 Wei L L, Liu Y, Zhong S W, et al. Transcriptome analysis of grass carp provides insights into the immune-related genes and pathways in response to MC-LR induction[J]. Aquaculture, 2018, 488:207-216 王晓杰, 肖潇, 李超, 等. 海洋酸化对海水青鳉胚胎骨骼发育的影响[J]. 海洋学报, 2015, 37(12):116-122 Wang X J, Xiao X, Li C, et al. Impact of ocean acidification on skeletal development in embryonic marine medaka[J]. Haiyang Xuebao, 2015, 37(12):116-122(in Chinese)
王赛男, 刘春艳, 穆景利, 等. 不同分散剂对海水青鳉早期发育毒性影响的比较研究[J]. 海洋环境科学, 2013, 32(6):801-805 Wang S N, Liu C Y, Mu J L, et al. Comparative study on the toxicity of different dispersants to the early development of marine medaka(Oryzias melatigma)[J]. Marine Environmental Science, 2013, 32(6):801-805(in Chinese)
伍辛泷, 黄乾生, 方超, 等. 新兴海洋生态毒理学模式生物——海洋青鳉鱼(Oryzias melastigma)[J]. 生态毒理学报, 2012, 7(4):345-353 Wu X L, Huang Q S, Fang C, et al. Oryzias melastigma:A new promising model organism for marine ecotoxicology[J]. Asian Journal of Ecotoxicology, 2012, 7(4):345-353(in Chinese)
Qiao Q, Le Manach S, Huet H, et al. An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity[J]. Environmental Pollution, 2016, 219:119-131 Guillard R R, Ryther J H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran[J]. Canda Journal of Microbiology, 1962, 8:229-239 孙军, 刘东艳, 钱树本. 浮游植物生物量研究Ⅰ.浮游植物生物量细胞体积转化法[J]. 海洋学报, 1999, 21(2):75-85 Sun J, Liu D Y, Qian S B. Study on phytoplankton biomass Ⅰ. Phytoplankton measurement biomass from cell volume or plasma volume[J]. Acta Oceanologica Sinica, 1999, 21(2):75-85(in Chinese)
Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108 Bo J, Giesy J P, Ye R, et al. Identification of differentially expressed genes and quantitative expression of complement genes in the liver of marine medaka Oryzias melastigma challenged with Vibrio parahaemolyticus[J]. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 2012, 7(2):191-200 Li X D, Yan T, Lin J N, et al. Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms[J]. Harmful Algae, 2017, 61:1-12 Lin J N, Yan T, Zhang Q C, et al. Impact of several harmful algal bloom (HAB) causing species, on life history characteristics of rotifer Brachionus plicatilis Müller[J]. Chinese Journal of Oceanology and Limnology, 2016, 34(4):642-653 Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill:Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiological Reviews, 2005, 85(1):97-177 Zhang X, Wang S L, Chen S L, et al. Transcriptome analysis revealed changes of multiple genes involved in immunity in Cynoglossus semilaevis during Vibrio anguillarum infection[J]. Fish & Shellfish Immunology, 2015, 43(1):209-218 Mollnes T E, Song W C, Lambris J D. Complement in inflammatory tissue damage and disease[J]. Trends in Immunology, 2002, 23(2):61-64 Song W C, Rosa Sarrias M, Lambris J D. Complement and innate immunity[J]. Immunopharmacology, 2000, 49(1-2):187-198 刘明英, 张士璀. 纤溶酶原:结构、功能与进化[J]. 中国海洋大学学报(自然科学版), 2010, 40(10):69-74Liu M Y, Zhang S C. Plasminogen:Structure, function and evolution[J]. Periodical of Ocean University of China, 2010, 40(10):69-74(in Chinese) Ramm L E, Whitlow M B, Mayer M M. Transmembrane channel formation by complement:Functional analysis of the number of C5b6, C7, C8, and C9 molecules required for a single channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(15):4751-4755 Gehringer M M. Microcystin-LR and okadaic acid-induced cellular effects:A dualistic response[J]. FEBS Letters, 2004, 557(1-3):1-8 Wang X T, Chen Y, Zuo X T, et al. Microcystin (-LR) induced testicular cell apoptosis via up-regulating apoptosis-related genes in vivo[J]. Food and Chemical Toxicology, 2013, 60:309-317 Delaney J, Chiarello R, Villar D, et al. Regulation of c-fos, c-Jun and c-myc gene expression by angiotensin Ⅱ in primary cultured rat astrocytes:Role of ERK1/2 MAP kinases[J]. Neurochemical Research, 2008, 33(3):545-550 Zegura B, Straser A, Filipicč M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins-A review[J]. Mutation Research, 2011, 727(1-2):16-41 Molina A, Carpeaux R, Martial J A, et al. A transformed fish cell line expressing a green fluorescent protein-luciferase fusion gene responding to cellular stress[J]. Toxicology in Vitro, 2002, 16(2):201-207 Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity[J]. Nature Reviews Immunology, 2002, 2(3):185-194 李晓登. 海洋卡盾藻对翡翠贻贝的致毒效应[D]. 广州:暨南大学, 2014:18-45Li X D. Toxic effects of Chattonella marina to Perna viridis[D]. Guangzhou:Jinan University, 2014:18 -45(in Chinese)
Guh Y J, Hwang P P. Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model[J]. General and Comparative Endocrinology, 2017, 251:12-20 Zhang X Y, Wen H S, Qi X, et al. Na+-K+-ATPase and nka genes in spotted sea bass (Lateolabrax maculatus) and their involvement in salinity adaptation[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 235:69-81 欧祥亚. 米氏凯伦藻赤潮对东海养殖鱼类鳃组织结构损害作用的研究[D]. 广州:暨南大学, 2006:16-37Ou X Y. Histopathological effect of Karenia mikimotoi bloom on gills of common farmed fishes in the East China Sea[D]. Guangzhou:Jinan University, 2006:16 -37(in Chinese)
Singh V K, Berry L, Bernut A, et al. A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of Mycobacterium marinum in multiple hosts[J]. Cellular Microbiology, 2016, 18(11):1489-1507 Dunlap J C. Molecular bases for circadian clocks[J]. Cell, 1999, 96(2):271-290 Cahill G M. Clock mechanisms in zebrafish[J]. Cell and Tissue Research, 2002, 309(1):27-34 -

计量
- 文章访问数: 1665
- HTML全文浏览数: 1665
- PDF下载数: 145
- 施引文献: 0