某铀矿及周边地区土壤放射性水平调查与评价
Investigation and Evaluation of Soil Radioactivity Levels in A Uranium Mine and Surrounding Areas
-
摘要: 为查明某铀矿及其周边土壤放射性污染特征,本文对矿区废石场、工业场地和尾矿库周边土壤放射性水平进行现场调查,结果表明,238U比活度为595.5~2 335.1 Bq·kg-1,226Ra比活度为637~16 551 Bq·kg-1;γ辐射空气吸收剂量率分别为全国、世界平均水平的11.91倍、14.05倍;氡析出率范围为全国范围值的0.34倍~6.62倍,各源项的最大超标点位均位于尾矿库周边。通过对数据进行描述性统计分析发现,226Ra比活度对放射性源项的拟合度高于238U。238U比活度与226Ra比活度、氡析出率、空气吸收辐射剂量率呈现弱相关性,226Ra比活度、氡析出率、空气吸收辐射剂量率三者之间达到高度相关,说明226Ra比活度对氡析出和空气吸收辐射剂量的产生具有重要作用。污染评价结果表明,强潜在生态风险点位占比最大(47.37%),226Ra对总风险的贡献率较高(最高82.92%);且由226Ra引发的健康风险值相较于238U高出1~2个数量级,是主要的健康风险来源,摄入途径是主要暴露途径;研究区空气辐射最大年有效剂量达24.66 mSv,最大集体有效剂量为4 476.32 人·Sv,最大终生癌症风险为9.53×10-2;最大氡年释放量为4.57×1012 Bq,影响并辐射周边约36 503 m2。研究结果可为矿区退役治理工程提供基础支撑。Abstract: To investigate the radioactive contamination characteristics of a uranium mine and its surrounding soil, the radioactivity level of the soil around the waste rock quarry, industrial site, and tailing pond in the mine area was determined. The mass activity of radioactive 238U and 226Ra in the soils varied from 595.5 to 2 335.1 Bq·kg-1 and 637 to 16 551 Bq·kg-1, respectively. The gamma absorbed dose rate in the air is 11.91 and 14.05 times higher than that of the national and worldwide average values, respectively; the radon precipitation rate ranges from 0.34 to 6.62 times of the national values. The descriptive statistics analysis exhibited that the fitting degree of 226Ra activity to the source items was higher than that of 238U. We further noticed, the activity of 238U was found in a weak correlation with 226Ra activity, whereas, a significantly high correlation was recognized among 226Ra mass activity, radon precipitation rate, and air absorbed radiation dose rate, indicating that the activity of 226Ra plays an important role in radon precipitation and air absorbed radiation. The assessment of pollution showed that most of the sampling sites (47.37%) exhibited high potential ecological risks. The contribution of 226Ra to the total risk is relatively high (up to 82.92%). The health risk value caused by 226Ra is 1 to 2 orders of magnitude higher than that of 238U, which is the main health risk source, and the main exposure route is ingestion. The maximum annual effective dose of air radiation in the study area reaches 24.66 mSv. The maximum collective effective dose, maximum lifetime cancer risk, and maximum annual radon precipitation are 4 476.32 man·Sv, 9.53×10-2, and 4.57×1012 Bq, respectively. It is concluded that the affected and radiated area is about 36 503 m2. Importantly, this research could provide technical support for the mine decommissioning treatment strategies for better management of the environment.
-
Key words:
- uranium mine /
- radionuclides /
- absorbed radiation dose /
- health risk
-
-
王津, 李红春, 刘娟, 等. 铀矿开采利用过程中的放射性污染研究进展[J]. 环境与健康杂志, 2013, 30(11):1033-1036 Wang J, Li H C, Liu J, et al. Progress on radioactive pollution and related problems caused by uranium mining[J]. Journal of Environment and Health, 2013, 30(11):1033-1036(in Chinese)
刘娟, 李红春, 王津, 等. 华南某铀矿开采利用对地表水环境质量的影响[J]. 环境化学, 2012, 31(7):981-989 Liu J, Li H C, Wang J, et al. Environmental quality of surface waters in a uranium industrial site in South China[J]. Environmental Chemistry, 2012, 31(7):981-989(in Chinese)
朱琳, 王斐. 环境中放射性污染的来源、特点、危害和防护[J]. 河南科技, 2014(13):185 Zhu L, Wang F. Sources, characteristics, hazards and protection of radioactive pollution in the environment[J]. Journal of Henan Science and Technology, 2014(13 ):185(in Chinese)
徐园, 孔海宇, 王希涛, 等. 水体环境中的放射性污染及测量[J]. 核安全, 2020, 19(1):75-79 Xu Y, Kong H Y, Wang X T, et al. Radioactive pollution in water environment and its measurement[J]. Nuclear Safety, 2020, 19(1):75-79(in Chinese)
汪江英, 朱建林, 莫子奋, 等. 土壤中铀的赋存形态及放射性污染治理研究进展[J]. 能源研究与管理, 2020(4):65-69 Wang J Y, Zhu J L, Mo Z F, et al. Advances in research on occurrence of uranium in soil and radioactive pollution control[J]. Energy Research and Management, 2020 (4):65-69(in Chinese)
刘畅荣, 王志勇, 崔娜. 铀矿区大气放射性污染的健康风险评价研究展望[J]. 工业设计, 2016(8):180-181 Liu C R, Wang Z Y, Cui N. Prospect of health risk assessment of atmospheric radioactive pollution in uranium mining areas[J]. Industrial Design, 2016 (8):180-181(in Chinese)
Hossain K A, Kumar G A, Sumon R M, et al. An investigation on the possible radioactive contamination of environment during a steam-line break accident in a VVER-1200 nuclear power plant[J]. Current World Environment, 2019, 14(2):299-311 Noguera A, Pereira H B, Fornaro L. Natural radionuclide survey in the coastal strip of the 290 Ramsar site, Uruguay[J]. Environmental Earth Sciences, 2018, 77(22):755 蒋文波, 高柏, 张海阳, 等. 某铀矿区周边土壤238U和226Ra分布特征及污染评价[J]. 中国环境科学, 2021, 41(4):1799-1805 Jiang W B, Gao B, Zhang H Y, et al. Distribution characteristics and pollution assessment of 238U and 226Ra in soils surrounding a uranium mining area[J]. China Environmental Science, 2021, 41(4):1799-1805(in Chinese)
林武辉, 王诗玥, 黄亚萍, 等. 大气中γ辐射空气吸收剂量率的波动机制[J]. 中国环境科学, 2022, 42(3):1097-1103 Lin W H, Wang S Y, Huang Y P, et al. Mechanism of the variable γ radiation air absorbed dose rate in the atmosphere[J]. China Environmental Science, 2022, 42(3):1097-1103(in Chinese)
Suresh S, Rangaswamy D R, Sannappa J, et al. Estimation of natural radioactivity and assessment of radiation hazard indices in soil samples of Uttara Kannada District, Karnataka, India[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(4):1869-1879 Beretka J, Matthew P J. Natural radioactivity of Australian building materials, industrial wastes and by-products[J]. Health Physics, 1985, 48(1):87-95 Asad S. Investigation of elemental and radiological contamination of soils in two shipyards in Chittagong, Bangladesh[J]. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science & Technology, 2014, 102(8):741-749 余根锌. 福建省环境地表γ辐射剂量率估算与人居环境安全性评价[J]. 物探与化探, 2021, 45(1):192-199 Yu G X. The environmental terrestrial gamma-radiation dose rate estimation and the living environment safety evaluation in Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1):192-199(in Chinese)
哈日巴拉, 拓飞, 胡碧涛, 等. 巴彦乌拉铀矿周围饮用水中放射性及健康风险[J]. 中国环境科学, 2017, 37(9):3583-3590 Haribala, Tuo F, Hu B T, et al. Radioactivity and health risk of drinking water around Bayanwula uranium mining area[J]. China Environmental Science, 2017, 37(9):3583-3590(in Chinese)
Chandrasekaran A, Senthilkumar G, Thillaivelavan K, et al. Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India[J]. Egyptian Journal of Basic and Applied Sciences, 2014, 1:38-48 国家技术监督局. 环境核辐射监测规定:GB 12379-1990[S]. 北京:中国标准出版社, 1990 国家技术监督局. 岩石样品中226Ra的分析方法射气法:GB/T 13073-1991[S]. 北京:中国标准出版社, 1992 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤中放射性核素的γ能谱分析方法:GB/T 11743-2013[S]. 北京:中国标准出版社, 2014 中国核工业总公司. 表面氡析出率测定:EJ/T 979-1995[S]. 北京:中国核工业总公司, 1995 国家环境保护局, 国家技术监督局. 环境地表γ辐射剂量率测定规范:GB/T 14583-1993[S]. 北京:中国标准出版社, 1993 王漫漫. 太湖流域典型河流重金属风险评估及来源解析[D]. 南京:南京大学, 2016:6-7 Wang M M. Risk assessment and source apportionment of heavy metals in typical rivers of Taihu Basin[D]. Nanjing:Nanjing University, 2016:6 -7(in Chinese)
阿卜杜萨拉木·阿布都加帕尔, 王宏卫, 杨胜天, 等. 准东地区土壤重金属污染特征及来源分析[J]. 中国矿业, 2019, 28(11):168-174 Abdusalam A, Wang H W, Yang S T, et al. Pollution characteristics and source analysis of soil heavy metals in East Junggar region[J]. China Mining Magazine, 2019, 28(11):168-174(in Chinese)
李战国, 朱勇兵, 李军, 等. 226Ra污染场地调查与健康风险评估[J]. 安全与环境学报, 2020, 20(6):2408-2415 Li Z G, Zhu Y B, Li J, et al. Investigation and health risk assessment of 226Ra in deserted contaminated site[J]. Journal of Safety and Environment, 2020, 20(6):2408-2415(in Chinese)
U.S. Environmental Protection Agency (US EPA). RAIS risk exposure models for radionuclides user's guide[EB/OL]. (2019-07-15)[2022-10-12]. https://rais.Ornl.gov/tools/rais_rad_risk_guide.html. Oak Ridge National Laboratory. Area correction factors for contaminated soil for use in risk and dose assessment models[EB/OL].[2022-10-12]. https://rais.ornl.gov/tools/ACF_FINAL.Pdf,2014. United Nations Scientific Committee on the Effects of Atomic Radiations (UNSCEAR). 1993 Sources, effects and risks of ionizing radiation[R]. New York:UNSCEAR, 1993 United Nations Scientific Committee on the Effects of Atomic Radiations (UNSCEAR). 2000 Sources and effects of ionizing radiation. UNSCEAR Report on the general assembly, with scientific annex[R]. New York:UNSCEAR, 2000 Abdurabu W A, Ramli A T, Saleh M A, et al. Terrestrial gamma dose rate, radioactivity and radiological hazards in the rocks of an elevated radiation background in Juban District, Ad Dali' Governorate, Yemen[J]. Journal of Radiological Protection:Official Journal of the Society for Radiological Protection, 2016, 36(1):163-177 International Commission on Radiological Protection (ICRP). ICRP Publication 60:1990 Recommendations of the International Commission on Radiological Protection. Annual of ICRP Reference[R]. Ottawa:ICRP, 1991 全国环境天然放射性水平调查总结报告编写小组. 全国土壤中天然放射性核素含量调查研究(1983-1990年)[J]. 辐射防护, 1992, 12(2):122-142 The Writing Group for the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China. Investigation of natural radionuclide contents in soil in China[J]. Radialization Protection, 1992, 12(2):122-142(in Chinese)
潘自强, 修炳林. 联合国原子辐射效应科学委员会及其第49次会议[J]. 辐射防护, 2000, 20(5):312-317 , 320 Pan Z Q, Xiu B L. United nations scientific committee on the effects of atomic radiation (UNSCEAR) and its forty-ninth session[J]. Radialization Protection, 2000, 20(5):312-317, 320(in Chinese)
Wang Z Y. Natural radiation environment in China[J]. International Congress Series, 2002, 1225:39-46 肖高平. 铀尾矿库氡析出率变化规律的研究及应用[D]. 衡阳:南华大学, 2016:31-45 Xiao G P. Study on the variation characteristics of radon exhalation rate and its application in uranium tailings reservoir[D]. Hengyang:University of South China, 2016:31 -45(in Chinese)
朱国兴. 西南某磷矿周边环境放射性水平研究[D]. 北京:中国地质大学(北京), 2018:21-30 Zhu G X. Study on the radioactivity level of the surrounding environment of a phosphate rock in southwest China[D]. Beijing:China University of Geosciences, 2018:21-30(in Chinese) 刘成, 杨亚新, 彭道峰, 等. 铀矿山废石堆表面氡析出率的变化规律[J]. 东华理工大学学报(自然科学版), 2013, 36(4):385-389 Liu C, Yang Y X, Peng D F, et al. Change regulation of the radon exhalation rate in the waste dump of uranium mine[J]. Journal of East China Institute of Technology (Natural Science), 2013, 36(4):385-389(in Chinese) 李冠超, 蒋文波, 钟丽艳, 等. 某钽铌厂及周边土壤放射性水平调查与健康风险评估[J]. 有色金属(冶炼部分), 2021(12):112-119 Li G C, Jiang W B, Zhong L Y, et al. Investigation and health risk assessment of soil radioactivity level in tantalum-niobium plant and its surroundings[J]. Nonferrous Metals (Extractive Metallurgy), 2021(12):112-119(in Chinese) 国家质量监督检验检疫总局. 电离辐射防护与辐射源安全基本标准:GB 18871-2002[S]. 北京:中国标准出版社, 2004 Pawel D, Boyd M. Studies of radiation health effects inform EPA actions[J]. Journal of Radiological Protection:Official Journal of the Society for Radiological Protection, 2019, 39(4):S40-S57 谢志辉, 刘春琼, 史凯. 成都市PM10对大气辐射环境的影响[J]. 环境科学研究, 2016, 29(7):972-977 Xie Z H, Liu C Q, Shi K. Impacts of PM10 on the radiation environments of the atmosphere in Chengdu City[J]. Research of Environmental Sciences, 2016, 29(7):972-977(in Chinese)
-

计量
- 文章访问数: 1912
- HTML全文浏览数: 1912
- PDF下载数: 157
- 施引文献: 0