环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制

张杏丽, 史菁, 赵静宜, 金彩霞, 张国庆, 邹威. 环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制[J]. 生态毒理学报, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001
引用本文: 张杏丽, 史菁, 赵静宜, 金彩霞, 张国庆, 邹威. 环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制[J]. 生态毒理学报, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001
Zhang Xingli, Shi Jing, Zhao Jingyi, Jin Caixia, Zhang Guoqing, Zou Wei. Promotion Effects and Molecular Response Mechanism of Polyamide Microplastics on Hepatotoxicity of TDCIPP at Environmental Concentration[J]. Asian journal of ecotoxicology, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001
Citation: Zhang Xingli, Shi Jing, Zhao Jingyi, Jin Caixia, Zhang Guoqing, Zou Wei. Promotion Effects and Molecular Response Mechanism of Polyamide Microplastics on Hepatotoxicity of TDCIPP at Environmental Concentration[J]. Asian journal of ecotoxicology, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001

环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制

    作者简介: 张杏丽(1987-),女,博士,主要研究方向为污染物的生态毒理与分子机制,E-mail:zhxl929@126.com
    通讯作者: 邹威,E-mail:zouwei@htu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41907349,21906043);中国博士后面上项目(2019M662499);河南省科技攻关项目(222102320227);中国生态学学会青年人才托举工程(STQT2021C08)

  • 中图分类号: X171.5

Promotion Effects and Molecular Response Mechanism of Polyamide Microplastics on Hepatotoxicity of TDCIPP at Environmental Concentration

    Corresponding author: Zou Wei, zouwei@htu.edu.cn
  • Fund Project:
  • 摘要: 微塑料的生态环境及健康风险日益引起关注。为阐明微塑料对共存污染物毒性效应的影响,实验以斑马鱼为模式生物,探究环境相关浓度聚酰胺(PA;100 μg·L-1)微塑料与磷酸三(1,3-二氯异丙基)酯(TDCIPP;0.4、2和10 μg·L-1)复合暴露4个月对斑马鱼肝脏结构和功能的影响,并揭示其分子响应机制。结果显示,100 μg·L-1的PA处理对斑马鱼无明显不良影响,相比于10 μg·L-1 TDCIPP处理组,PA共暴露使斑马鱼体长、体质量和肝体指数分别降低5.9%、11.7%、12.8%;单独TDCIPP处理组和PA与TDCIPP复合处理组肝脏内TDCIPP含量分别为0.18~4.12 μg·g-1和0.32~5.30 μg·g-1 (以单位湿质量计),表明PA可显著提高TDCIPP在斑马鱼肝脏内的富集含量;相比于空白和单一处理组,PA和TDCIPP复合胁迫下肝脏活性氧、抗氧化酶活性、炎症因子水平显著升高,肝细胞核萎缩、胞质溶解和组织坏死等现象加剧。代谢组学分析发现,单一PA或TDCIPP主要干扰肝脏糖类有氧代谢和三羧酸循环,复合暴露时肝脏ATP合成抑制进一步加剧,解毒和排泄功能相关的谷胱甘肽合成和精氨酸代谢过程显著下调,具有抗炎效应的不饱和脂肪酸合成过程上调。上述结果从酶活、炎症效应、组织损伤及内源代谢方面阐明环境浓度PA微塑料增强TDCIPP肝脏毒性的机制。
  • 加载中
  • Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    骆永明, 施华宏, 涂晨, 等. 环境中微塑料研究进展与展望[J]. 科学通报, 2021, 66(13):1547-1562

    Luo Y M, Shi H H, Tu C, et al. Research progresses and prospects of microplastics in the environment[J]. Chinese Science Bulletin, 2021, 66(13):1547-1562(in Chinese)

    Zhang Z Q, Gao S H, Luo G Y, et al. The contamination of microplastics in China's aquatic environment:Occurrence, detection and implications for ecological risk[J]. Environmental Pollution, 2022, 296:118737
    Castro-Castellon A T, Horton A A, Hughes J M R, et al. Ecotoxicity of microplastics to freshwater biota:Considering exposure and hazard across trophic levels[J]. The Science of the Total Environment, 2022, 816:151638
    Xiang Y J, Jiang L, Zhou Y Y, et al. Microplastics and environmental pollutants:Key interaction and toxicology in aquatic and soil environments[J]. Journal of Hazardous Materials, 2022, 422:126843
    Xia B, Zhang J, Zhao X G, et al. Polystyrene microplastics increase uptake, elimination and cytotoxicity of decabromodiphenyl ether (BDE-209) in the marine scallop Chlamys farreri[J]. Environmental Pollution, 2020, 258:113657
    Zhao H J, Xu J K, Yan Z H, et al. Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish[J]. Environment International, 2020, 140:105750
    Trevisan R, Voy C, Chen S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14):8405-8415
    Grigorakis S, Drouillard K G. Effect of microplastic amendment to food on diet assimilation efficiencies of PCBs by fish[J]. Environmental Science & Technology, 2018, 52(18):10796-10802
    Rehse S, Kloas W, Zarfl C. Microplastics reduce short-term effects of environmental contaminants. part Ⅰ:Effects of bisphenol A on freshwater zooplankton are lower in presence of polyamide particles[J]. International Journal of Environmental Research and Public Health, 2018, 15(2):280
    Ma Y L, Stubbings W A, Abdallah M A, et al. Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment:A critical review with particular focus on outdoor air and soil[J]. The Science of the Total Environment, 2022, 807(Pt 1):150747
    Lee S, Cho H J, Choi W, et al. Organophosphate flame retardants (OPFRs) in water and sediment:Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea[J]. Marine Pollution Bulletin, 2018, 130:105-112
    Li Y, Huang K, Jiang J Q, et al. Tris(1,3-dichloro-2-propyl)phosphate induces mass mortality of crucian carp (Carassius carassius) embryos in Taihu Lake[J]. Environmental Science & Technology, 2021, 55(23):15980-15988
    Yan Z F, Jin X W, Liu D Q, et al. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms[J]. Chemosphere, 2021, 266:128989
    Du J, Li H X, Xu S D, et al. A review of organophosphorus flame retardants (OPFRs):Occurrence, bioaccumulation, toxicity, and organism exposure[J]. Environmental Science and Pollution Research International, 2019, 26(22):22126-22136
    Zou W, Zhang X L, Ouyang S H, et al. Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism[J]. The Science of the Total Environment, 2020, 727:138486
    Ren X, Zhao X S, Duan X Y, et al. Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish[J]. Environmental Pollution, 2018, 233:612-622
    Farhat A, Buick J K, Williams A, et al. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos[J]. Toxicology and Applied Pharmacology, 2014, 275(2):104-112
    李学彦, 王思敏, 周启星, 等. 三(1,3-二氯-2-丙基)磷酸酯诱发肝脏损害及病理改变研究[J]. 生态毒理学报, 2018, 13(6):234-241

    Li X Y, Wang S M, Zhou Q X, et al. Tris (1,3-dichloro-2-propyl) phosphate induced hepatic damages and pathological changes[J]. Asian Journal of Ecotoxicology, 2018, 13(6):234-241(in Chinese)

    Liu C S, Su G Y, Giesy J P, et al. Acute exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in zebrafish[J]. Scientific Reports, 2016, 6:19045
    Zhang X L, Xia M L, Zhao J Y, et al. Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish[J]. Environment International, 2022, 158:106922
    Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River Estuary, China[J]. Chemosphere, 2019, 217:879-886
    Klangnurak W, Chunniyom S. Screening for microplastics in marine fish of Thailand:The accumulation of microplastics in the gastrointestinal tract of different foraging preferences[J]. Environmental Science and Pollution Research International, 2020, 27(21):27161-27168
    Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool:A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7):453-457
    Yang W F, Gao X X, Wu Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2020, 195:110484
    Bartonitz A, Anyanwu I N, Geist J, et al. Modulation of PAH toxicity on the freshwater organism G. roeseli by microparticles[J]. Environmental Pollution, 2020, 260:113999
    Zhang X L, Zhao J Y, Gan T T, et al. Aging relieves the promotion effects of polyamide microplastics on parental transfer and developmental toxicity of TDCIPP to zebrafish offspring[J]. Journal of Hazardous Materials, 2022, 437:129409
    Zhang X L, Zhou Q X, Zou W, et al. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations[J]. Environmental Science & Technology, 2017, 51(14):7861-7871
    Wong J K H, Lee K K, Tang K H D, et al. Microplastics in the freshwater and terrestrial environments:Prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment, 2020, 719:137512
    Leusch F D L, Ziajahromi S. Converting mg/L to particles/L:Reconciling the occurrence and toxicity literature on microplastics[J]. Environmental Science & Technology, 2021, 55(17):11470-11472
    Reisser J, Slat B, Noble K, et al. The vertical distribution of buoyant plastics at sea:An observational study in the North Atlantic Gyre[J]. Biogeosciences, 2015, 12(4):1249-1256
    Kang J H, Kwon O Y, Shim W J. Potential threat of microplastics to zooplanktivores in the surface waters of the southern sea of Korea[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3):340-351
    Goldstein M C, Rosenberg M, Cheng L N. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect[J]. Biology Letters, 2012, 8(5):817-820
    Zhang C, Jeong C B, Lee J S, et al. Transgenerational proteome plasticity in resilience of a marine copepod in response to environmentally relevant concentrations of microplastics[J]. Environmental Science & Technology, 2019, 53(14):8426-8436
    Hu M Y, Li J, Zhang B B, et al. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China[J]. Marine Pollution Bulletin, 2014, 86(1-2):569-574
    Wei G L, Li D Q, Zhuo M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46
    张杏丽, 邹威, 周启星. 基于代谢组学技术分析磷酸三苯酯诱导斑马鱼胚胎发育毒性的分子机制[J]. 生态毒理学报, 2019, 14(3):79-89

    Zhang X L, Zou W, Zhou Q X. Molecular mechanisms of developmental toxicity of triphenyl phosphate on zebrafish embryo revealed by metabolomics[J]. Asian Journal of Ecotoxicology, 2019, 14(3):79-89(in Chinese)

    Zhao X S, Liu Z B, Ren X, et al. Parental transfer of nanopolystyrene-enhanced tris(1,3-dichloro-2-propyl) phosphate induces transgenerational thyroid disruption in zebrafish[J]. Aquatic Toxicology, 2021, 236:105871
    Umamaheswari S, Priyadarshinee S, Bhattacharjee M, et al. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio)[J]. Chemosphere, 2021, 281:128592
    Qiang L Y, Cheng J P. Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio)[J]. Chemosphere, 2021, 263:128161
    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Lu K, Qiao R X, An H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202:514-520
    Sheng C, Zhang S H, Zhang Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish[J]. Journal of Hazardous Materials, 2021, 402:123733
    Bhagat J, Zang L Q, Nishimura N, et al. Zebrafish:An emerging model to study microplastic and nanoplastic toxicity[J]. Science of the Total Environment, 2020, 728:138707
    Zhu C X, Zhang T Q, Liu X W, et al. Changes in life-history traits, antioxidant defense, energy metabolism and molecular outcomes in the cladoceran Daphnia pulex after exposure to polystyrene microplastics[J]. Chemosphere, 2022, 308(Pt 1):136066
    Missawi O, Venditti M, Cappello T, et al. Autophagic event and metabolomic disorders unveil cellular toxicity of environmental microplastics on marine polychaete Hediste diversicolor[J]. Environmental Pollution, 2022, 302:119106
    Wan Z Q, Wang C Y, Zhou J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217:646-658
    Xu T F, Lim Y T, Chen L Y, et al. A novel mechanism of monoethylhexyl phthalate in lipid accumulation via inhibiting fatty acid beta-oxidation on hepatic cells[J]. Environmental Science & Technology, 2020, 54(24):15925-15934
    Zmora N, Bashiardes S, Levy M, et al. The role of the immune system in metabolic health and disease[J]. Cell Metabolism, 2017, 25(3):506-521
    Oh D Y, Talukdar S, Bae E J, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects[J]. Cell, 2010, 142(5):687-698
    Kong L, Cheng S Y, Xiang X J, et al. Dietary conjugated linoleic acid modulates morphology, selective immune parameters, and gene expressions in the intestine of grass carp[J]. Fish & Shellfish Immunology, 2019, 86:536-548
    Zhang Y K, Yang B K, Zhang C N, et al. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics[J]. The Science of the Total Environment, 2022, 850:157772
    Wang Q C, Xu Z, Ai Q H. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish[J]. Animal Nutrition, 2021, 7(3):716-727
  • 加载中
计量
  • 文章访问数:  1783
  • HTML全文浏览数:  1783
  • PDF下载数:  159
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-29
张杏丽, 史菁, 赵静宜, 金彩霞, 张国庆, 邹威. 环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制[J]. 生态毒理学报, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001
引用本文: 张杏丽, 史菁, 赵静宜, 金彩霞, 张国庆, 邹威. 环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制[J]. 生态毒理学报, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001
Zhang Xingli, Shi Jing, Zhao Jingyi, Jin Caixia, Zhang Guoqing, Zou Wei. Promotion Effects and Molecular Response Mechanism of Polyamide Microplastics on Hepatotoxicity of TDCIPP at Environmental Concentration[J]. Asian journal of ecotoxicology, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001
Citation: Zhang Xingli, Shi Jing, Zhao Jingyi, Jin Caixia, Zhang Guoqing, Zou Wei. Promotion Effects and Molecular Response Mechanism of Polyamide Microplastics on Hepatotoxicity of TDCIPP at Environmental Concentration[J]. Asian journal of ecotoxicology, 2023, 18(4): 384-400. doi: 10.7524/AJE.1673-5897.20220929001

环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制

    通讯作者: 邹威,E-mail:zouwei@htu.edu.cn
    作者简介: 张杏丽(1987-),女,博士,主要研究方向为污染物的生态毒理与分子机制,E-mail:zhxl929@126.com
  • 河南师范大学环境学院, 黄淮水环境污染与防治教育部重点实验室, 河南省环境污染控制重点实验室, 新乡 453007
基金项目:

国家自然科学基金资助项目(41907349,21906043);中国博士后面上项目(2019M662499);河南省科技攻关项目(222102320227);中国生态学学会青年人才托举工程(STQT2021C08)

摘要: 微塑料的生态环境及健康风险日益引起关注。为阐明微塑料对共存污染物毒性效应的影响,实验以斑马鱼为模式生物,探究环境相关浓度聚酰胺(PA;100 μg·L-1)微塑料与磷酸三(1,3-二氯异丙基)酯(TDCIPP;0.4、2和10 μg·L-1)复合暴露4个月对斑马鱼肝脏结构和功能的影响,并揭示其分子响应机制。结果显示,100 μg·L-1的PA处理对斑马鱼无明显不良影响,相比于10 μg·L-1 TDCIPP处理组,PA共暴露使斑马鱼体长、体质量和肝体指数分别降低5.9%、11.7%、12.8%;单独TDCIPP处理组和PA与TDCIPP复合处理组肝脏内TDCIPP含量分别为0.18~4.12 μg·g-1和0.32~5.30 μg·g-1 (以单位湿质量计),表明PA可显著提高TDCIPP在斑马鱼肝脏内的富集含量;相比于空白和单一处理组,PA和TDCIPP复合胁迫下肝脏活性氧、抗氧化酶活性、炎症因子水平显著升高,肝细胞核萎缩、胞质溶解和组织坏死等现象加剧。代谢组学分析发现,单一PA或TDCIPP主要干扰肝脏糖类有氧代谢和三羧酸循环,复合暴露时肝脏ATP合成抑制进一步加剧,解毒和排泄功能相关的谷胱甘肽合成和精氨酸代谢过程显著下调,具有抗炎效应的不饱和脂肪酸合成过程上调。上述结果从酶活、炎症效应、组织损伤及内源代谢方面阐明环境浓度PA微塑料增强TDCIPP肝脏毒性的机制。

English Abstract

参考文献 (53)

返回顶部

目录

/

返回文章
返回