Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
|
骆永明, 施华宏, 涂晨, 等. 环境中微塑料研究进展与展望[J]. 科学通报, 2021, 66(13):1547-1562
Luo Y M, Shi H H, Tu C, et al. Research progresses and prospects of microplastics in the environment[J]. Chinese Science Bulletin, 2021, 66(13):1547-1562(in Chinese)
|
Zhang Z Q, Gao S H, Luo G Y, et al. The contamination of microplastics in China's aquatic environment:Occurrence, detection and implications for ecological risk[J]. Environmental Pollution, 2022, 296:118737
|
Castro-Castellon A T, Horton A A, Hughes J M R, et al. Ecotoxicity of microplastics to freshwater biota:Considering exposure and hazard across trophic levels[J]. The Science of the Total Environment, 2022, 816:151638
|
Xiang Y J, Jiang L, Zhou Y Y, et al. Microplastics and environmental pollutants:Key interaction and toxicology in aquatic and soil environments[J]. Journal of Hazardous Materials, 2022, 422:126843
|
Xia B, Zhang J, Zhao X G, et al. Polystyrene microplastics increase uptake, elimination and cytotoxicity of decabromodiphenyl ether (BDE-209) in the marine scallop Chlamys farreri[J]. Environmental Pollution, 2020, 258:113657
|
Zhao H J, Xu J K, Yan Z H, et al. Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish[J]. Environment International, 2020, 140:105750
|
Trevisan R, Voy C, Chen S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14):8405-8415
|
Grigorakis S, Drouillard K G. Effect of microplastic amendment to food on diet assimilation efficiencies of PCBs by fish[J]. Environmental Science & Technology, 2018, 52(18):10796-10802
|
Rehse S, Kloas W, Zarfl C. Microplastics reduce short-term effects of environmental contaminants. part Ⅰ:Effects of bisphenol A on freshwater zooplankton are lower in presence of polyamide particles[J]. International Journal of Environmental Research and Public Health, 2018, 15(2):280
|
Ma Y L, Stubbings W A, Abdallah M A, et al. Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment:A critical review with particular focus on outdoor air and soil[J]. The Science of the Total Environment, 2022, 807(Pt 1):150747
|
Lee S, Cho H J, Choi W, et al. Organophosphate flame retardants (OPFRs) in water and sediment:Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea[J]. Marine Pollution Bulletin, 2018, 130:105-112
|
Li Y, Huang K, Jiang J Q, et al. Tris(1,3-dichloro-2-propyl)phosphate induces mass mortality of crucian carp (Carassius carassius) embryos in Taihu Lake[J]. Environmental Science & Technology, 2021, 55(23):15980-15988
|
Yan Z F, Jin X W, Liu D Q, et al. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms[J]. Chemosphere, 2021, 266:128989
|
Du J, Li H X, Xu S D, et al. A review of organophosphorus flame retardants (OPFRs):Occurrence, bioaccumulation, toxicity, and organism exposure[J]. Environmental Science and Pollution Research International, 2019, 26(22):22126-22136
|
Zou W, Zhang X L, Ouyang S H, et al. Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism[J]. The Science of the Total Environment, 2020, 727:138486
|
Ren X, Zhao X S, Duan X Y, et al. Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish[J]. Environmental Pollution, 2018, 233:612-622
|
Farhat A, Buick J K, Williams A, et al. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos[J]. Toxicology and Applied Pharmacology, 2014, 275(2):104-112
|
李学彦, 王思敏, 周启星, 等. 三(1,3-二氯-2-丙基)磷酸酯诱发肝脏损害及病理改变研究[J]. 生态毒理学报, 2018, 13(6):234-241
Li X Y, Wang S M, Zhou Q X, et al. Tris (1,3-dichloro-2-propyl) phosphate induced hepatic damages and pathological changes[J]. Asian Journal of Ecotoxicology, 2018, 13(6):234-241(in Chinese)
|
Liu C S, Su G Y, Giesy J P, et al. Acute exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in zebrafish[J]. Scientific Reports, 2016, 6:19045
|
Zhang X L, Xia M L, Zhao J Y, et al. Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish[J]. Environment International, 2022, 158:106922
|
Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River Estuary, China[J]. Chemosphere, 2019, 217:879-886
|
Klangnurak W, Chunniyom S. Screening for microplastics in marine fish of Thailand:The accumulation of microplastics in the gastrointestinal tract of different foraging preferences[J]. Environmental Science and Pollution Research International, 2020, 27(21):27161-27168
|
Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool:A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7):453-457
|
Yang W F, Gao X X, Wu Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2020, 195:110484
|
Bartonitz A, Anyanwu I N, Geist J, et al. Modulation of PAH toxicity on the freshwater organism G. roeseli by microparticles[J]. Environmental Pollution, 2020, 260:113999
|
Zhang X L, Zhao J Y, Gan T T, et al. Aging relieves the promotion effects of polyamide microplastics on parental transfer and developmental toxicity of TDCIPP to zebrafish offspring[J]. Journal of Hazardous Materials, 2022, 437:129409
|
Zhang X L, Zhou Q X, Zou W, et al. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations[J]. Environmental Science & Technology, 2017, 51(14):7861-7871
|
Wong J K H, Lee K K, Tang K H D, et al. Microplastics in the freshwater and terrestrial environments:Prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment, 2020, 719:137512
|
Leusch F D L, Ziajahromi S. Converting mg/L to particles/L:Reconciling the occurrence and toxicity literature on microplastics[J]. Environmental Science & Technology, 2021, 55(17):11470-11472
|
Reisser J, Slat B, Noble K, et al. The vertical distribution of buoyant plastics at sea:An observational study in the North Atlantic Gyre[J]. Biogeosciences, 2015, 12(4):1249-1256
|
Kang J H, Kwon O Y, Shim W J. Potential threat of microplastics to zooplanktivores in the surface waters of the southern sea of Korea[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3):340-351
|
Goldstein M C, Rosenberg M, Cheng L N. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect[J]. Biology Letters, 2012, 8(5):817-820
|
Zhang C, Jeong C B, Lee J S, et al. Transgenerational proteome plasticity in resilience of a marine copepod in response to environmentally relevant concentrations of microplastics[J]. Environmental Science & Technology, 2019, 53(14):8426-8436
|
Hu M Y, Li J, Zhang B B, et al. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China[J]. Marine Pollution Bulletin, 2014, 86(1-2):569-574
|
Wei G L, Li D Q, Zhuo M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46
|
张杏丽, 邹威, 周启星. 基于代谢组学技术分析磷酸三苯酯诱导斑马鱼胚胎发育毒性的分子机制[J]. 生态毒理学报, 2019, 14(3):79-89
Zhang X L, Zou W, Zhou Q X. Molecular mechanisms of developmental toxicity of triphenyl phosphate on zebrafish embryo revealed by metabolomics[J]. Asian Journal of Ecotoxicology, 2019, 14(3):79-89(in Chinese)
|
Zhao X S, Liu Z B, Ren X, et al. Parental transfer of nanopolystyrene-enhanced tris(1,3-dichloro-2-propyl) phosphate induces transgenerational thyroid disruption in zebrafish[J]. Aquatic Toxicology, 2021, 236:105871
|
Umamaheswari S, Priyadarshinee S, Bhattacharjee M, et al. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio)[J]. Chemosphere, 2021, 281:128592
|
Qiang L Y, Cheng J P. Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio)[J]. Chemosphere, 2021, 263:128161
|
Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
|
Lu K, Qiao R X, An H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202:514-520
|
Sheng C, Zhang S H, Zhang Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish[J]. Journal of Hazardous Materials, 2021, 402:123733
|
Bhagat J, Zang L Q, Nishimura N, et al. Zebrafish:An emerging model to study microplastic and nanoplastic toxicity[J]. Science of the Total Environment, 2020, 728:138707
|
Zhu C X, Zhang T Q, Liu X W, et al. Changes in life-history traits, antioxidant defense, energy metabolism and molecular outcomes in the cladoceran Daphnia pulex after exposure to polystyrene microplastics[J]. Chemosphere, 2022, 308(Pt 1):136066
|
Missawi O, Venditti M, Cappello T, et al. Autophagic event and metabolomic disorders unveil cellular toxicity of environmental microplastics on marine polychaete Hediste diversicolor[J]. Environmental Pollution, 2022, 302:119106
|
Wan Z Q, Wang C Y, Zhou J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217:646-658
|
Xu T F, Lim Y T, Chen L Y, et al. A novel mechanism of monoethylhexyl phthalate in lipid accumulation via inhibiting fatty acid beta-oxidation on hepatic cells[J]. Environmental Science & Technology, 2020, 54(24):15925-15934
|
Zmora N, Bashiardes S, Levy M, et al. The role of the immune system in metabolic health and disease[J]. Cell Metabolism, 2017, 25(3):506-521
|
Oh D Y, Talukdar S, Bae E J, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects[J]. Cell, 2010, 142(5):687-698
|
Kong L, Cheng S Y, Xiang X J, et al. Dietary conjugated linoleic acid modulates morphology, selective immune parameters, and gene expressions in the intestine of grass carp[J]. Fish & Shellfish Immunology, 2019, 86:536-548
|
Zhang Y K, Yang B K, Zhang C N, et al. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics[J]. The Science of the Total Environment, 2022, 850:157772
|
Wang Q C, Xu Z, Ai Q H. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish[J]. Animal Nutrition, 2021, 7(3):716-727
|