BDE-28对斑马鱼核受体介导的内分泌干扰效应研究

宋静文, 靳亚茹, 刘红玲. BDE-28对斑马鱼核受体介导的内分泌干扰效应研究[J]. 生态毒理学报, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002
引用本文: 宋静文, 靳亚茹, 刘红玲. BDE-28对斑马鱼核受体介导的内分泌干扰效应研究[J]. 生态毒理学报, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002
Song Jingwen, Jin Yaru, Liu Hongling. Endocrine Disruption Effect of BDE-28 Mediated by Zebrafish Nuclear Receptor[J]. Asian journal of ecotoxicology, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002
Citation: Song Jingwen, Jin Yaru, Liu Hongling. Endocrine Disruption Effect of BDE-28 Mediated by Zebrafish Nuclear Receptor[J]. Asian journal of ecotoxicology, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002

BDE-28对斑马鱼核受体介导的内分泌干扰效应研究

    作者简介: 宋静文(1995-),男,硕士研究生,研究方向为环境毒理学,E-mail:jingwensong@yeah.net
  • 基金项目:

    国家自然科学基金资助项目(21677073);国家重点研发项目(2018YFC1801505);国家科技重大专项(2017ZX07301002,2018ZX07208001)

  • 中图分类号: X171.5

Endocrine Disruption Effect of BDE-28 Mediated by Zebrafish Nuclear Receptor

  • Fund Project:
  • 摘要: 2,4,4’-三溴联苯醚(BDE-28)在环境中普遍存在,且在长江流域多种水生生物中检出。目前,国内外对高溴代PBDEs(如BDE-47、BDE-99等)的水生脊椎动物内分泌干扰效应报道较多,而BDE-28的有关研究则相对较少。将斑马鱼胚胎暴露于2、20和200 μg·L-1的BDE-28后,借助q-RT-PCR方法对幼鱼8个重要受体包括雄激素受体(AR)、甲状腺激素受体(TR)、芳香烃受体(AhR)、雌激素受体(ER)、糖皮质激素受体(GR)、孕烷X受体(PXR)、盐皮质激素受体(MR)和过氧化物酶体增殖物激活受体(PPAR)相关基因的转录水平进行了研究。结果表明,BDE-28暴露可导致AR、TR和AhR的基因下调,其中核心受体AR和TR在低中高3种浓度下的下调倍数分别为3.03、2.64、10.10和2.21、2.18、2.31,芳香烃受体基因2(ahr2)在暴露于2和20 μg·L-1的BDE-28后,下调倍数分别为12.65和9.23,而雌激素受体(er1)基因在低中高浓度显著上调,上调倍数分别为12.29、12.67和15.87,雌激素受体(er2a)基因在2和20 μg·L-1 BDE-28下的上调倍数分别为10.83和17.19。进一步采用分子对接和分子动力学模拟的方法研究BDE-28与AR、TR、AhR和ER之间的相互作用。结果显示,BDE-28与这些受体通过疏水和氢键等相互作用稳定结合,动力学模拟后骨架原子的均方根偏差(RMSD)在5 ns后较稳定。由此可知,BDE-28通过AR、TR、AhR和ER受体介导产生内分泌干扰效应。
  • 加载中
  • Keum Y S, Li Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7):2280-2286
    Shen M, Yu Y, Zheng G J, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta[J]. Marine Pollution Bulletin, 2006, 10(52):1299-1304
    Guo J Y, Wu F C, Mai B X, et al. Polybrominated diphenyl ethers in seafood products of South China[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22):9152-9158
    Gao Z, Xu J, Xian Q, et al. Polybrominated diphenyl ethers (PBDEs) in aquatic biota from the lower reach of the Yangtze River, East China[J]. Chemosphere, 2009, 75(9):1273-1279
    Usenko C Y, Robinson E M, Usenko S, et al. PBDE developmental effects on embryonic zebrafish[J]. Environmental Toxicology & Chemistry, 2011, 30(8):1865-1872
    Shy C G, Huang H L, Chang-Chien G P, et al. Neurodevelopment of infants with prenatal exposure to polybrominated diphenyl ethers[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(6):643-648
    Schriks M, Roessig J M, Murk A J, et al. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay[J]. Environmental Toxicology and Pharmacology, 2007, 23(3):302-307
    Vuong A M, Webster G M, Romano M E, et al. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera:The HOME Study, Cincinnati, USA[J]. Environmental Health Perspectives, 2015, 123(10):1079-1085
    Zhang L, Jin Y, Han Z, et al. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish[J]. Environmental Toxicology & Chemistry, 2018, 37(3):780-787
    Liu C, Yan W, Zhou B, et al. Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos[J]. Aquatic Toxicology, 2012, 118:108-115
    Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-A rapid access to atomic charges[J]. Tetrahedron, 1980, 36(22):3219-3228
    Clark M, Cramer R D, Van Opdenbosch N. Validation of the general purpose TRIPOS 5.2 force field[J]. Journal of Computational Chemistry, 1989, 10(8):982-1012
    Kiefer F, Arnold K, Künzli M, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2008, 37(suppl1):D387-D392
    Liu H, Tang S, Zheng X, et al. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2015, 49(3):1823-1833
    Saito R, Smoot M E, Ono K, et al. A travel guide to Cytoscape plugins[J]. Nature Methods, 2012, 9(11):1069-1076
    Wu B, Zhang Y, Kong J, et al. In silico predication of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking[J]. Toxicology Letters, 2009, 191(1):69-73
    Chen Q, Wang X, Shi W, et al. Identification of thyroid hormone disruptors among HO-PBDEs:in vitro investigations and coregulator involved simulations[J]. Environmental Science & Technology, 2016, 50(22):12429-12438
    Davison S, Bell R. Androgen physiology[J]. Seminars in Reproductive Medicine, 2006, 24(2):71-77
    Meerts I A, Letcher R J, Hoving S, et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds[J]. Environmental Health Perspectives, 2001, 109(4):399-407
    Mercado-Feliciano M, Bigsby R M. The polybrominated diphenyl ether mixture DE-71 is mildly estrogenic[J]. Environmental Health Perspectives, 2008, 116(5):605-611
    Noordermeer J, Klingensmith J, Perrimon N, et al. Dishevelled and armadillo act in the wingless signalling pathway in Drosophila[J]. Nature, 1994, 367(6458):80-83
    Main K M, Kiviranta H, Virtanen H E, et al. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys[J]. Environmental Health Perspectives, 2007, 115(10):1519-1526
    Muirhead E K, Skillman A D, Hook S E, et al. Oral exposure of PBDE-47 in fish:Toxicokinetics and reproductive effects in Japanese medaka (Oryzias latipes) and fathead minnows (Pimephales promelas)[J]. Environmental Science & Technology, 2006, 40(2):523-528
    Yu Y J, Lin B G, Liang W B, et al. Associations between PBDEs exposure from house dust and human semen quality at an e-waste areas in South China-A pilot study[J]. Chemosphere, 2018, 198:266-273
    Bloom M, Spliethoff H, Vena J, et al. Environmental exposure to PBDEs and thyroid function among New York anglers[J]. Environmental Toxicology and Pharmacology, 2008, 25(3):386-392
    Chevrier J, Harley K G, Bradman A, et al. Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy[J]. Environmental Health Perspectives, 2010, 118(10):1444-1449
    Chen J D, Evans R M. A transcriptional co-repressor that interacts with nuclear hormone receptors[J]. Nature, 1995, 377(6548):454-457
    Sande S, Privalsky M L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors[J]. Molecular Endocrinology, 1996, 10(7):813-825
    Visser T J. Pathways of thyroid hormone metabolism[J]. Acta Medica Austriaca, 1996, 23(1-2):10-16
    Zhao X, Ren X, Ren B, et al. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2016, 48:157-167
    Kojima H, Takeuchi S, Uramaru N, et al. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells[J]. Environmental Health Perspectives, 2009, 117(8):1210-1218
  • 加载中
计量
  • 文章访问数:  3406
  • HTML全文浏览数:  3406
  • PDF下载数:  89
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-13
宋静文, 靳亚茹, 刘红玲. BDE-28对斑马鱼核受体介导的内分泌干扰效应研究[J]. 生态毒理学报, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002
引用本文: 宋静文, 靳亚茹, 刘红玲. BDE-28对斑马鱼核受体介导的内分泌干扰效应研究[J]. 生态毒理学报, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002
Song Jingwen, Jin Yaru, Liu Hongling. Endocrine Disruption Effect of BDE-28 Mediated by Zebrafish Nuclear Receptor[J]. Asian journal of ecotoxicology, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002
Citation: Song Jingwen, Jin Yaru, Liu Hongling. Endocrine Disruption Effect of BDE-28 Mediated by Zebrafish Nuclear Receptor[J]. Asian journal of ecotoxicology, 2020, 15(1): 146-154. doi: 10.7524/AJE.1673-5897.20190413002

BDE-28对斑马鱼核受体介导的内分泌干扰效应研究

    作者简介: 宋静文(1995-),男,硕士研究生,研究方向为环境毒理学,E-mail:jingwensong@yeah.net
  • 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京 210023
基金项目:

国家自然科学基金资助项目(21677073);国家重点研发项目(2018YFC1801505);国家科技重大专项(2017ZX07301002,2018ZX07208001)

摘要: 2,4,4’-三溴联苯醚(BDE-28)在环境中普遍存在,且在长江流域多种水生生物中检出。目前,国内外对高溴代PBDEs(如BDE-47、BDE-99等)的水生脊椎动物内分泌干扰效应报道较多,而BDE-28的有关研究则相对较少。将斑马鱼胚胎暴露于2、20和200 μg·L-1的BDE-28后,借助q-RT-PCR方法对幼鱼8个重要受体包括雄激素受体(AR)、甲状腺激素受体(TR)、芳香烃受体(AhR)、雌激素受体(ER)、糖皮质激素受体(GR)、孕烷X受体(PXR)、盐皮质激素受体(MR)和过氧化物酶体增殖物激活受体(PPAR)相关基因的转录水平进行了研究。结果表明,BDE-28暴露可导致AR、TR和AhR的基因下调,其中核心受体AR和TR在低中高3种浓度下的下调倍数分别为3.03、2.64、10.10和2.21、2.18、2.31,芳香烃受体基因2(ahr2)在暴露于2和20 μg·L-1的BDE-28后,下调倍数分别为12.65和9.23,而雌激素受体(er1)基因在低中高浓度显著上调,上调倍数分别为12.29、12.67和15.87,雌激素受体(er2a)基因在2和20 μg·L-1 BDE-28下的上调倍数分别为10.83和17.19。进一步采用分子对接和分子动力学模拟的方法研究BDE-28与AR、TR、AhR和ER之间的相互作用。结果显示,BDE-28与这些受体通过疏水和氢键等相互作用稳定结合,动力学模拟后骨架原子的均方根偏差(RMSD)在5 ns后较稳定。由此可知,BDE-28通过AR、TR、AhR和ER受体介导产生内分泌干扰效应。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回