浮游动物物种构成对于淡水测试系统抗农药胁迫能力的影响
Relevance of Species Composition of Freshwater Zooplankton to Resistance of the Systems towards Pesticide Stresses
-
摘要: 多物种系统在农药生态效应的评估中不可或缺,有必要探索系统的建立和应用,为此笔者构建了包含隆线溞(Daphnia carinata)、中华薄壳介(Dolerocypris sinensis)和锯缘真剑水蚤(Eucyclops serrulatus) 3种节肢动物当中的1种或全部,以及包含萼花臂尾轮虫(Brachionus calyciflorus)、小球藻(Chlorella vulgaris)和轮叶黑藻(Hydrilla verticillata)的4组多物种系统。它们被用来测量杀虫剂毒死蜱的群落效应。研究结果显示,包含3种节肢动物的测试系统比只包含1种的系统中群落结构更稳定,更能够揭示杀虫剂对轮虫的诱导效应,其对杀虫剂也更敏感。毒死蜱在该系统内的最高无作用浓度(NOEC)和最低有效浓度(LOEC)分别为0.25和1.25 μg·L-1。本研究所构建的是一类总氮、总磷和浊度水平趋于下降的测试系统。杀虫剂的引入促进了系统内pH、铵态氮和电导率水平的上升以及总氮、总磷和浊度水平的下降。从LOEC的数值及持续时间上看,游离态壳二糖酶可以被用来指示农药对浮游动物的胁迫。本研究的结果显示,包含3种节肢动物的测试系统能够更准确地衡量农药对浮游动物的生态胁迫。Abstract: Multi-species systems are essential for measuring ecological hazards of pesticides, and it is necessary to explore ways for their establishment and utilization efficiency. Four types of multi-species systems, consisting of either Daphnia carinata, or Dolerocypris sinensis, or Eucyclops serrulatus, or all of them and Brachionus calyciflorus, Chlorella vulgaris, and Hydrilla verticillata, were therefore established in this study. The systems were employed for measuring impacts of chlorpyrifos on the multi-species systems at the level of community. Results of the study indicated that the systems that consist of all of the three species of arthropods were more stable in structure, more effective in revealing induction of the insecticide towards the rotifer, and more sensitive to the suppression of insecticide. Maximal no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) of the chlorpyrifos was found to be 0.25 and 1.25 μg·L-1, respectively, in this system. All of the systems established were a sort of system in which total nitrogen, total phosphorous, and turbidity tended to decline. The insecticide was observed to promote the level of pH, ammonium nitrogen, and conductivity, and decline the level of total nitrogen, total phosphorous, and turbidity. Considering the value of LOEC and the time lasting for the effect, free-living chitobiase was able to indicate the suppression effect of the insecticide on zooplanktons. It is suggested that the system including all of the three species of arthropods was more effective in measuring the ecological stress of pesticide towards zooplanktons.
-
Key words:
- chlorpyrifos /
- zooplanktons /
- arthropods /
- aquatic plant /
- freshwater systems /
- water quality /
- chitobiase
-
Sumon K A, Rashid H, Peeters E T H M, et al. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh[J]. Chemosphere, 2018, 206:92-100 Sumon K A, Rico A, Ter Horst M M S, et al. Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh[J]. Science of the Total Environment, 2016, 568:498-506 Koelmans A A, Diepens N J, Velzeboer I, et al. Guidance for the prognostic risk assessment of nanomaterials in aquatic ecosystems[J]. Science of the Total Environment, 2015, 535:141-149 林荣华,姜辉,王猛,等.物种敏感度分布(SSD)方法在农药环境风险评估中的应用[J].生态毒理学报, 2017, 12(4):110-118 Lin R H, Jiang H, Wang M, et al. Application of species sensitivity distribution (SSD) to the environmental risk assessment of pesticides[J]. Asian Journal of Ecotoxicology, 2017, 12(4):110-118(in Chinese)
周欣欣,曲甍甍,陈朗,等.物种敏感度分布(SSD)方法在农药环境风险评估中的应用[J].农药, 2017, 56(11):786-790 Zhou X X, Qu M M, Chen L, et al. The application of species sensitivity distribution (SSD) method in environmental risk assessment of pesticide[J]. Agrochemicals, 2017, 56(11):786-790(in Chinese)
Organization for Economic Co-operation and Development (OECD). OECD guidelines for the testing of chemicals, Daphnia sp., acute immobilisation test[S]. Paris:OECD, 2004 Organization for Economic Co-operation and Development (OECD). OECD guidelines for the testing of chemicals, Daphnia magna reproduction test[S]. Paris:OECD, 2012 Yin X H, Brock T C M, Barone L E, et al. Exposure and effects of sediment-spiked fludioxonil on macroinvertebrates and zooplankton in outdoor aquatic microcosms[J]. Science of the Total Environment, 2018, 610-611:1222-1238 Pereira A S, Cerejeira M J, Daam M A. Toxicity of environmentally realistic concentrations of chlorpyrifos and terbuthylazine in indoor microcosms[J]. Chemosphere, 2017, 182:348-355 Lin R, Buijse L, Dimitrov M R, et al. Effects of the fungicide metiram in outdoor freshwater microcosms:Responses of invertebrates, primary producers and microbes[J]. Ecotoxicology, 2012, 21:1550-1569 Wojtal-Frankiewicz A. The effects of global warming on Daphnia spp. population dynamics:A review[J]. Aquatic Ecology, 2012, 46(1):37-53 Kim Y, Mo H, Son J, et al. Interactive effects of water pH and hardness levels on the growth and reproduction of Heterocypris incongruens (Crustacea:Ostracoda)[J]. Hydrobiologia, 2015, 753:97-109 项贤领,朱凌云,陈莹莹,等.微囊藻毒素和温度对萼花臂尾轮虫(Brachionus calyciflorus)形态学特征的影响[J].湖泊科学, 2018, 30(4):1027-1040 Xiang X L, Zhu L Y, Chen Y Y, et al. Combined effects of the microcystin MC-LR and temperature on the morphological features of Brachionus calyciflorus[J]. Journal of Lake Sciences, 2018, 30(4):1027-1040(in Chinese)
Hilt S, Gross E M. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes?[J]. Basic and Applied Ecology, 2008, 9:422-432 Daam M A, van den Brink P J, Nogueira A J. Impact of single and repeated applications of the insecticide chlorpyrifos on tropical freshwater plankton communities[J]. Ecotoxicology, 2008, 17(8):756-771 Daam M A, Crum S J, van den Brink P J, et al. Fate and effects of the insecticide chlorpyrifos in outdoor planktondominated microcosms in Thailand[J]. Environmental Toxicology and Chemistry, 2008, 27(12):2530-2538 López-Mancisidor P, Carbonell G, Marina A, et al. Zooplankton community responses to chlorpyrifos in mesocosms under Mediterranean conditions[J]. Ecotoxicology and Environmental Safety, 2008, 71:16-25 Hua J, Relyea R. Chemical cocktails in aquatic systems:Pesticide effects on the response and recovery of >20 animal taxa[J]. Environmental Pollution, 2014, 189:18-26 Zafar M I, van Wijngaarden R P, Roessink I, et al. Effects of time-variable exposure regimes of the insecticide chlorpyrifos on freshwater invertebrate communities in microcosms[J]. Environmental Toxicology and Chemistry, 2011, 30(6):1383-1394 刘福光,刘毅华,赵颖,等.毒死蜱对南方稻区水域生态效应的室内微宇宙模拟研究[J].农药学学报, 2013, 15(2):198-203 Liu F G, Liu Y H, Zhao Y, et al. Indoor microcosms study on ecological effects of rice paddy applied with chlorpyrifos on zooplankton in south China[J]. Chinese Journal of Pesticide Science, 2013, 15(2):198-203(in Chinese)
Xiao P, Liu F, Liu Y, et al. Effects of pesticide mixtures on zooplankton assemblages in aquatic microcosms simulating rice paddy fields[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99:27-32 Cohen E. Chitin biochemistry:Synthesis, hydrolysis and inhibition[J]. Advances in Insect Physiology, 2010, 38:5-74 Espie P J, Roff J C. Characterization of chitobiase from Daphnia magna and its relation to chitin flux[J]. Physiological Zoology, 1995, 68:727-748 Espie P J, Roff J C. A biochemical index of duration of the molt cycle for planktonic Crustacea based on the chitin-degrading enzyme, chitobiase[J]. Limnology and Oceanography, 1995, 40(6):1028-1034 Vrba J, Macháč ek J. Release of dissolved extracellular β-N-acetylglucosaminidase during crustacean moulting[J]. Limnology and Oceanography, 1994, 39(3):712-716 Duchet C, Inafuku M M, Caquet T, et al. Chitobiase activity as an indicator of altered survival, growth and reproduction in Daphnia pulex and Daphnia magna (Crustacea:Cladocera) exposed to spinosad and diflubenzuron[J]. Ecotoxicology and Environmental Safety, 2011, 74:800-810 Qi S, Wang C, Chen X,et al. Toxicity assessments with Daphnia magna of guadipyr, a new neonicotinoid insecticide and studies of its effect on acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT) and chitobiase activities[J]. Ecotoxicology and Environmental Safety, 2013, 98:339-344 International Association for Testing Materials (ASTM). Standard practice for standardized aquatic microcosms:Fresh water[S]. West Conshohocken, PA, United States:ASTM, 2007 国家环境保护局. GB/T 6920-1986水质pH值的测定玻璃电极法[S].北京:国家环境保护局, 1986 National Environmental Protection Agency. GB/T 6920-1986 Water quality-Determination of pH value-Glass electrode method[S]. Beijing:National Environmental Protection Agency, 1986 (in Chinese)
中华人民共和国地质矿产部. DZ/T 0064.6-93地下水质检验方法电导率的测定[S].北京:中华人民共和国地质矿产部, 1993 国家环境保护局. GB/T 11893-1989水质总磷的测定钼酸铵分光光度法[S].北京:国家环境保护局, 1989 National Environmental Protection Agency. GB/T 11893-1989 Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method[S]. Beijing:National Environmental Protection Agency, 1989 (in Chinese)
国家环境保护局. GB/T 11894-1989水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S].北京:国家环境保护局, 1989 National Environmental Protection Agency. GB/T 11894-1989 Water quality-Determination of total nitrogen-Alkaline potassium persulfate digestion-UV spectrophotometric method[S]. Beijing:National Environmental Protection Agency, 1989 (in Chinese)
国家环境保护局. GB/T 7479-1987水质铵的测定纳氏试剂比色法[S].北京:国家环境保护局, 1987 National Environmental Protection Agency. GB/T 7479-1987 Determination of ammonium-Nessler's reagent colorimetric method[S]. Beijing:National Environmental Protection Agency, 1987 (in Chinese)
国家环境保护局. GB 13200-91水质浊度的测定[S].北京:国家环境保护局, 1991 National Environmental Protection Agency. GB 13200-91 Water quality-Determination of turbidity[S]. Beijing:National Environmental Protection Agency, 1991 (in Chinese)
Hanson M, Lagadic L. Chitobiase activity as an indicator of aquatic ecosystem health[J]. Aquatic Ecosystem Health and Management, 2005, 8:441-450 Ter Braak C J F, Šmilauer P. Canoco Reference Manual and User'S Guide:Software for Ordination (Version 5.0)[M]. Ithaca, NY, USA:Microcomputer Power, 2012:21-59, 292-297 唐启义. DPS数据处理系统第一卷基础统计及实验设计(第3版)[M].北京:科学出版社, 2013:192-202 Tang Q Y. DPS Data Processing System, Volume 1, Essential Statistics and Experimental Designs, Third Edition[M]. Beijing:Science Press, 2013 :192-202(in Chinese)
黄林,席贻龙.两种轮虫和多刺裸腹溞的临界食物密度和耐饥饿能力的比较[J].安徽农学通报, 2017, 23(18):4-6 , 25 Huang L, Xi Y L. Comparative study on the threshold food concentrations and starvation abilities of rotifer Brachionus calyciflorus, B. angularis and Cladoceran Moina macrocopa[J]. Anhui Agricultural Science Bulletin, 2017, 23(18):4-6, 25(in Chinese)
Dieguez M C, Gilbert J J. Daphnia-Rotifer interactions in Patagonian communities[J]. Hydrobiologia, 2011, 662:189-195 Jagadeesan L, Jyothibabu R, Arunpandi N, et al. Feeding preference and daily ration of 12 dominant copepods on mono and mixed diets of phytoplankton, rotifers, and detritus in a tropical coastal water[J]. Environmental Monitoring and Assessment, 2017, 189(10):503 Dhanker R, Hwang J S. Predation by Apocyclops royi (Cyclopoid:Copepod) on ciliates and rotifers[J]. Journal of Marine Science and Technology, 2013, 21:246-251 Gilbert J J. Effects of an ostracod (Cypris pubera) on the rotifer Keratella tropica:Predation and reduced spine development[J]. International Review of Hydrobiology, 2012, 97(5):445-453 van den Brink P J, Crum S J H, Gylstra R, et al. Effects of a herbicide-insecticide mixture in freshwater microcosms:Risk assessment and ecological effect chain[J]. Environmental Pollution, 2009, 157:237-249 Daam M A, van den Brink P J. Effects of chlorpyrifos, carbendazim, and linuron on the ecology of a small indoor aquatic microcosm[J]. Archives of Environmental Contamination and Toxicology, 2007, 53(1):22-35 van Wijngaarden R P, Brock T C, Douglas M T. Effects of chlorpyrifos in freshwater model ecosystems:The influence of experimental conditions on ecotoxicological thresholds[J]. Pest Management Science, 2005, 61(10):923-935 Szlauer-Łukaszewska A. Ostracod assemblages in relation to littoral plant communities of a shallow lake (Lake S'widwie, Poland)[J]. International Review of Hydrobiology, 2012, 97(4):262-275 Parween T, Jan S, Fatma T. Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos[J]. International Journal of Environmental Science and Technology, 2012, 9(4):605-612 Parween T, Jan S, Fatma T. Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos[J]. Acta Physiologiae Plantarum, 2011, 33:2321-2328 Bertrand L, Marino D J, Monferrán M V, et al. Can a low concentration of an organophosphate insecticide cause negative effects on an aquatic macrophyte?Exposure of Potamogeton pusillus at environmentally relevant chlorpyrifos concentrations[J]. Environmental and Experimental Botany, 2017, 138:139-147 Montagna M C, Collins P A. Oxygen consumption and ammonia excretion of the freshwater crab Trichodactylus borellianus exposed to chlorpyrifos and endosulfan insecticides[J]. Pesticide Biochemistry and Physiology, 2008, 92:150-155 Verónica W, Collins P A. Effects of cypermethrin on the freshwater crab Trichodactylus borellianus (Crustacea:Decapoda:Braquiura)[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71:106-113 Daam M A, Rodrigues A M F, van den Brink P J, et al. Ecological effects of the herbicide linuron in tropical freshwater microcosms[J]. Ecotoxicology and Environmental Safety, 2009, 72:410-423 Yebra L, Kobari T, Sastri A R, et al. Advances in biochemical indices of zooplankton production[J]. Advances in Marine Biology, 2017, 76:157-240 Sastri A R, Dower J F. Field validation of an instantaneous estimate of in situ development and growth for marine copepod communities[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63:2639-2647 Sastri A R, Roff J C. Rate of chitobiase degradation as a measure of development rate in planktonic Crustacea[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57:1965-1968
计量
- 文章访问数: 2676
- HTML全文浏览数: 2676
- PDF下载数: 49
- 施引文献: 0