Keum Y S, Li Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7):2280-2286
Shen M, Yu Y, Zheng G J, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta[J]. Marine Pollution Bulletin, 2006, 10(52):1299-1304
Guo J Y, Wu F C, Mai B X, et al. Polybrominated diphenyl ethers in seafood products of South China[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22):9152-9158
Gao Z, Xu J, Xian Q, et al. Polybrominated diphenyl ethers (PBDEs) in aquatic biota from the lower reach of the Yangtze River, East China[J]. Chemosphere, 2009, 75(9):1273-1279
Usenko C Y, Robinson E M, Usenko S, et al. PBDE developmental effects on embryonic zebrafish[J]. Environmental Toxicology & Chemistry, 2011, 30(8):1865-1872
Shy C G, Huang H L, Chang-Chien G P, et al. Neurodevelopment of infants with prenatal exposure to polybrominated diphenyl ethers[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(6):643-648
Schriks M, Roessig J M, Murk A J, et al. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay[J]. Environmental Toxicology and Pharmacology, 2007, 23(3):302-307
Vuong A M, Webster G M, Romano M E, et al. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera:The HOME Study, Cincinnati, USA[J]. Environmental Health Perspectives, 2015, 123(10):1079-1085
Zhang L, Jin Y, Han Z, et al. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish[J]. Environmental Toxicology & Chemistry, 2018, 37(3):780-787
Liu C, Yan W, Zhou B, et al. Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos[J]. Aquatic Toxicology, 2012, 118:108-115
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-A rapid access to atomic charges[J]. Tetrahedron, 1980, 36(22):3219-3228
Clark M, Cramer R D, Van Opdenbosch N. Validation of the general purpose TRIPOS 5.2 force field[J]. Journal of Computational Chemistry, 1989, 10(8):982-1012
Kiefer F, Arnold K, Künzli M, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2008, 37(suppl1):D387-D392
Liu H, Tang S, Zheng X, et al. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2015, 49(3):1823-1833
Saito R, Smoot M E, Ono K, et al. A travel guide to Cytoscape plugins[J]. Nature Methods, 2012, 9(11):1069-1076
Wu B, Zhang Y, Kong J, et al. In silico predication of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking[J]. Toxicology Letters, 2009, 191(1):69-73
Chen Q, Wang X, Shi W, et al. Identification of thyroid hormone disruptors among HO-PBDEs:in vitro investigations and coregulator involved simulations[J]. Environmental Science & Technology, 2016, 50(22):12429-12438
Davison S, Bell R. Androgen physiology[J]. Seminars in Reproductive Medicine, 2006, 24(2):71-77
Meerts I A, Letcher R J, Hoving S, et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds[J]. Environmental Health Perspectives, 2001, 109(4):399-407
Mercado-Feliciano M, Bigsby R M. The polybrominated diphenyl ether mixture DE-71 is mildly estrogenic[J]. Environmental Health Perspectives, 2008, 116(5):605-611
Noordermeer J, Klingensmith J, Perrimon N, et al. Dishevelled and armadillo act in the wingless signalling pathway in Drosophila[J]. Nature, 1994, 367(6458):80-83
Main K M, Kiviranta H, Virtanen H E, et al. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys[J]. Environmental Health Perspectives, 2007, 115(10):1519-1526
Muirhead E K, Skillman A D, Hook S E, et al. Oral exposure of PBDE-47 in fish:Toxicokinetics and reproductive effects in Japanese medaka (Oryzias latipes) and fathead minnows (Pimephales promelas)[J]. Environmental Science & Technology, 2006, 40(2):523-528
Yu Y J, Lin B G, Liang W B, et al. Associations between PBDEs exposure from house dust and human semen quality at an e-waste areas in South China-A pilot study[J]. Chemosphere, 2018, 198:266-273
Bloom M, Spliethoff H, Vena J, et al. Environmental exposure to PBDEs and thyroid function among New York anglers[J]. Environmental Toxicology and Pharmacology, 2008, 25(3):386-392
Chevrier J, Harley K G, Bradman A, et al. Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy[J]. Environmental Health Perspectives, 2010, 118(10):1444-1449
Chen J D, Evans R M. A transcriptional co-repressor that interacts with nuclear hormone receptors[J]. Nature, 1995, 377(6548):454-457
Sande S, Privalsky M L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors[J]. Molecular Endocrinology, 1996, 10(7):813-825
Visser T J. Pathways of thyroid hormone metabolism[J]. Acta Medica Austriaca, 1996, 23(1-2):10-16
Zhao X, Ren X, Ren B, et al. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2016, 48:157-167
Kojima H, Takeuchi S, Uramaru N, et al. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells[J]. Environmental Health Perspectives, 2009, 117(8):1210-1218