基于硬度和pH校正的锌的水生生物基准研究
Water Quality Criteria Study for Zn Based on Correction of Hardness and pH Parameters
-
摘要: 水环境因素(如pH、硬度等)对重金属的水生生物毒性有着重要的影响,进而会影响重金属的水质基准标准。目前我国的地表水环境质量标准中,重金属的指标大都是在标准实验条件下测试获得的,并没有考虑实际水环境中环境要素的影响。锌(Zn)是生命体必需的微量元素,也是我国地表水环境质量监测的重要指标之一,系统探究典型水环境要素对锌生物毒性的影响作用对我国水质基准和环境管理具有重要意义。基于此,本文基于实验室实测的8种水生生物pH和硬度的单因素实验的相关数据,同时结合生物有效性校正模型和物种敏感度分布法(species sensitivity distribution,SSD)进行多元线性回归方程模拟,构建出锌的基于多要素的多元线性毒性预测模型,并基于预测模型外推获得锌的危害浓度,急性基准值为300 μg·L-1,HC5值为600 μg·L-1。本研究综合考虑了关键水环境参数硬度和pH值对锌生物的综合影响,与其他国家或组织无校正或只基于硬度校正相比将更加完善和准确,研究结果可为水质基准推导和校正提供重要理论依据。Abstract: Water quality parameters, such as pH and hardness, play a significant role in determining the aquatic toxicity of heavy metals, which subsequently influences the water quality criteria for these substances. Current environmental quality standards for surface waters predominantly derive their heavy metal indicators from standardized experimental conditions that fail to consider the effects of real-world environmental factors. Zinc (Zn), an essential trace element for living organisms and a key indicator within China’s water quality monitoring framework, warrants a systematic investigation into how typical water environmental factors affect its biotoxicity in relation to water quality criteria and environmental management practices in China. Consequently, this study developed a multifactorial multivariate linear toxicity model for zinc utilizing data from single-factor experiments on pH and hardness, involving eight aquatic species assessed under laboratory conditions. The model integrates multiple linear regression equations adjusted with biological validity corrections alongside species sensitivity distributions (SSD). Through this methodology, we constructed a comprehensive multivariate linear toxicity model for zinc and extrapolated hazardous concentration estimates: the criterion maximum concentration (CMC) was established at 300 μg·L-1 while the HC5 value was determined to be 600 μg·L-1. This research takes into account the combined effects of hardness and pH on zinc’s impact on aquatic organisms, yielding results that are more robust and precise than those from other countries or organizations that do not incorporate such corrections or rely solely on adjustments based on hardness alone. Moreover, our findings provide an essential theoretical foundation for deriving refined water quality criteria.
-
Key words:
- Zn /
- pH /
- water quality criteria /
- model correction /
- species sensitivity distribution
-
-
吴丰昌,冯承莲,曹宇静,等.锌对淡水生物的毒性特征与水质基准的研究[J].生态毒理学报, 2011, 6(4):367-382. WU F C, FENG C L, CAO Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria[J]. Asian journal of ecotoxicology, 2011, 6(4):367-382.
洪亚军,冯承莲,徐祖信,等.重金属对水生生物的毒性效应机制研究进展[J].环境工程, 2019, 37(11):1-9. HONG Y J, FENG C L, XU Z X, et al. Advances on ecotoxicity effects of heavy metals to aquatic organisms and the mechanisms[J]. Environmental engineering, 2019, 37(11):1-9.
吴迪,杨秀珍,李存雄,等.贵州典型铅锌矿区水稻土壤和水稻中重金属含量及健康风险评价[J].农业环境科学学报, 2013, 32(10):1992-1998. WU D, YANG X Z, LI C X, et al. Concentrations and health risk assessments of heavy metals in soil and rice in zinc-lead mining area in Guizhou Province, China[J]. Journal of agro-environment science, 2013, 32(10):1992-1998.
CHU Z H, GU W W, LI Y. Adsorption mechanism of heavy metals in heavy metal/pesticide coexisting sediment systems through factional factorial design assisted by 2D-QSAR models[J]. Polish journal of environmental studies, 2018, 27(6):2451-2461. RAIMONDO S, BARRON M G. Application of interspecies correlation estimation (ICE) models and QSAR in estimating species sensitivity to pesticides[J]. SAR and QSAR in environmental research, 2020, 31(1):1-18. STAUBER J L, GADD J, PRICE G A V, et al. Applicability of chronic multiple linear regression models for predicting zinc toxicity in Australian and New Zealand freshwaters[J]. Environmental toxicology and chemistry, 2023, 42(12):2614-2629. ZHANG S N, SU L M, ZHANG X J, et al. Combined toxicity of nitro-substituted benzenes and zinc to Photobacterium phosphoreum:Evaluation and QSAR analysis[J]. International journal of environmental research and public health, 2019, 16(6):1041. 国家环境保护总局.地表水环境质量标准:GB 3838-2002[S].北京:中国标准出版社, 2002:35-37. 国家卫生健康委员会.生活饮用水卫生标准:GB 5749-2022[S].北京:中国标准出版社, 2022:16. 国家质量监督检验检疫总局,国家标准化管理委员会.地下水质量标准:GB/T 14848-2017[S].北京:中国标准出版社, 2017:20. LI X F, WANG P F, FENG C L, et al. Acute toxicity and hazardous concentrations of zinc to native freshwater organisms under different pH values in China[J]. Bulletin of environmental contamination and toxicology, 2019, 103(1):120-126. 郭渊,杨明儒,何佳,等.水体硬度对锌的水质基准及生态风险评估的影响[J].环境科学研究, 2021, 34(10):2497-2508. GUO Y, YANG M R, HE J, et al. Effect of hardness on water quality criteria and ecological risk assessment of zinc[J]. Research of environmental sciences, 2021, 34(10):2497-2508.
张佳圆,吴文涛,魏勇,等.不同pH淋滤条件下飞灰中铬、锌、镍、铅的环境效应[J].地球环境学报, 2019, 10(3):299-306. ZHANG J Y, WU W T, WEI Y, et al. Environmental effects of chromium, zinc, nickel and lead in fly ash under different pH leaching conditions[J]. Journal of earth environment, 2019, 10(3):299-306.
骆辉,黄新. pH值对雨洪沉积物中重金属锌、铅释放行为的影响[J].江苏农业科学, 2018, 46(4):217-219. LUO H, HUANG X. Effect of pH value on the release behavior of heavy metals zinc and lead in rain and flood sediments[J]. Jiangsu agricultural sciences, 2018, 46(4):217-219.
PRICE G A V, STAUBER J L, HOLLAND A, et al. The influence of pH on zinc lability and toxicity to a tropical freshwater microalga[J]. Environmental toxicology and chemistry, 2021, 40(10):2836-2845. PRICE G A V, STAUBER J L, JOLLEY D F, et al. Development and validation of multiple linear regression models for predicting chronic zinc toxicity to freshwater microalgae[J]. Environmental toxicology and chemistry, 2023, 42(12):2630-2641. PRICE G A V, STAUBER J L, JOLLEY D F, et al. Natural organic matter source, concentration, and pH influences the toxicity of zinc to a freshwater microalga[J]. Environmental pollution, 2023, 318:120797. 闫振飞,李小峰,刘大庆,等.不同水体硬度条件下锌对本土水生生物急性毒性的影响[J].环境工程, 2019, 37(11):19-24. YAN Z F, LI X F, LIU D Q, et al. Acute toxicity of zinc to native freshwater organisms under different water hardness[J]. Environmental engineering, 2019, 37(11):19-24.
刘大庆,李小峰,付卫强,等.我国淡水中锌的水生生物水质基准和生态风险[J].环境工程, 2017, 35(9):18-23. LIU D Q, LI X F, FU W Q, et al. Water quality criteria of zinc for the protection of freshwater organisms and its ecological risk in China[J]. Environmental engineering, 2017, 35(9):18-23.
MORLEY N J, CRANE M, LEWIS J W. Toxicity of cadmium and zinc to Diplostomum spathaceum(Trematoda:Diplostomidae) cercarial survival[J]. International journal for parasitology, 2001, 31(11):1211-1217. GAUDET C, LINGARD S, CURETON P, et al. Canadian environmental quality guidelines for mercury[J]. Water, air, and soil pollution, 1995, 80(1):1149-1159. United States Environmental Protection Agency (US EPA). National recommended water quality criteria[R]. Washington DC:Office of Water, Office of Science and Technology, 2006:35-37. Pérez-Burillo J, Trobajo R, Vasselon V, et al. Evaluation and sensitivity analysis of diatom DNA metabarcoding for WFD bioassessment of Mediterranean rivers[J]. Science of the total environment, 2020, 727:138647. 代允超,吕亚敏,吕家珑.土壤性质对小白菜吸收铬(Cr)的影响及预测模型研究[J].农业机械学报, 2018, 49(1):244-250. DAI Y C, LYU Y M, LYU J L. Influence of soil properties on chromium uptake of Brassia chinensis and its prediction models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1):244-250.
WALKER J, ENACHE M, DEARDEN J. Quantitative cationic activity relationships for predicting toxicity of metal ions from physicochemical properties and natural occurrence levels[J]. QSAR&combinatorial science, 2007, 26(4):522-527. 王飞飞,朱岩,张亚辉,等.基于生物有效性的重金属单一及联合毒性研究进展[J].环境工程, 2016, 34(12):43-47. WANG F F, ZHU Y, ZHANG Y H, et al. Advances in single and combined toxicity of heavy metals based on bioavailability[J]. Environmental engineering, 2016, 34(12):43-47.
曾庆楠,安毅,秦莉,等.物种敏感性分布法在建立土壤生态阈值方面的研究进展[J].安全与环境学报, 2018, 18(3):1220-1224. ZENG Q N, AN Y, QIN L, et al. Advances on species sensitivity distribution in deriving soil ecological thresholds[J]. Journal of safety and environment, 2018, 18(3):1220-1224.
HE J, TANG Z, ZHAO Y H, et al. The combined QSAR-ICE models:practical application in ecological risk assessment and water quality criteria[J]. Environmental science&technology, 2017, 51(16):8877-8878. HONG Y J, FENG C L, JIN X W, et al. A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity[J]. Environment international, 2022, 167:107367. MU Y S, WANG Z, WU F C, et al. Model for predicting toxicities of metals and metalloids in coastal marine environments worldwide[J]. Environmental science&technology, 2018, 52(7):4199-4206. WU F C, FENG C L, ZHANG R Q, et al. Derivation of water quality criteria for representative water-body pollutants in China[J]. Science China earth sciences, 2012, 55(6):900-906. WU F C, MU Y S, CHANG H, et al. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids[J]. Environmental science&technology, 2013, 47(1):446-453. MU Y S, WANG Z, WU F C, et al. Model for predicting toxicities of metals and metalloids in coastal marine environments worldwide[J]. Environmental science&technology, 2018, 52(7):4199-4206. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand. Australia and New Zealand guidelines for fresh and marine water quality[R] Canberra:ANZECC and ARMCANZ, 2000:1351-1367. 王学东,马义兵,华珞,等.环境中金属生物有效性的预测模型:生物配体模型研究进展[J].生态毒理学报, 2006, 1(3):193-202. WANG X D, MA Y B, HUA L, et al. Advances in biotic-ligand model to predict the bioavailability of metals in environments[J]. Asian journal of ecotoxicology, 2006, 1(3):193-202.
陈中智,朱琳,李燕,等.生物配体模型的适用性研究[J].环境保护科学, 2007, 33(6):81-84. CHEN Z Z, ZHU L, LI Y, et al. Study on the applicability of the biotic ligand model[J]. Environmental protection science, 2007, 33(6):81-84.
-

计量
- 文章访问数: 135
- HTML全文浏览数: 135
- PDF下载数: 51
- 施引文献: 0