镉胁迫下硒对蚓体镉富集、亚细胞分布和抗氧化指标的影响

杨慕源, 周升志, 杨莹, 姜珊, 周子涵, 符晓雯, 王瑞萍, 岳士忠. 镉胁迫下硒对蚓体镉富集、亚细胞分布和抗氧化指标的影响[J]. 生态毒理学报, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003
引用本文: 杨慕源, 周升志, 杨莹, 姜珊, 周子涵, 符晓雯, 王瑞萍, 岳士忠. 镉胁迫下硒对蚓体镉富集、亚细胞分布和抗氧化指标的影响[J]. 生态毒理学报, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003
YANG Muyuan, ZHOU Shengzhi, YANG Ying, JIANG Shan, ZHOU Zihan, FU Xiaowen, WANG Ruiping, YUE Shizhong. Effect of Selenium on Cadmium Bioaccumulation, Subcellular Distribution, and Antioxidant Indexes in Earthworms Under Cadmium Stress[J]. Asian journal of ecotoxicology, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003
Citation: YANG Muyuan, ZHOU Shengzhi, YANG Ying, JIANG Shan, ZHOU Zihan, FU Xiaowen, WANG Ruiping, YUE Shizhong. Effect of Selenium on Cadmium Bioaccumulation, Subcellular Distribution, and Antioxidant Indexes in Earthworms Under Cadmium Stress[J]. Asian journal of ecotoxicology, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003

镉胁迫下硒对蚓体镉富集、亚细胞分布和抗氧化指标的影响

    作者简介: 杨慕源(2004—),女,本科,研究方向为污染生态学,E-mail:1364352576@qq.com
    通讯作者: 岳士忠,E-mail:change@ynu.edu.cn
  • 基金项目:

    国家自然科学基金项目(32301418)

    山东省高等学校大学生创新创业训练计划项目(S202310448127,X202410448066)

    德州学院人才引进项目(2019XJRC328)

  • 中图分类号: X171.5

Effect of Selenium on Cadmium Bioaccumulation, Subcellular Distribution, and Antioxidant Indexes in Earthworms Under Cadmium Stress

    Corresponding author: YUE Shizhong, change@ynu.edu.cn
  • Fund Project:
  • 摘要: 为了解硒(Se)对重金属镉(Cd)污染土壤中蚯蚓所受胁迫的调节作用与机制,本研究以赤子爱胜蚓(Eisenia foetida)为研究对象,通过在Cd污染人工土壤中(150 mg·kg-1和300 mg·kg-1)添加外源Se (5 mg·kg-1和10 mg·kg-1)探究7 d和14 d其对蚯蚓生长、蚓体Cd累积与亚细胞分布和抗氧化指标的影响。结果表明:Cd能抑制蚯蚓生长且呈剂量-效应,Se在一定程度上缓解了Cd胁迫对生物量的抑制。7 d时Se有效抑制了暴露于污染土壤中的蚓体Cd累积和富集系数(BAFCd),而14 d时无显著影响,说明Se抑制蚓体Cd富集受暴露时间影响较大,短时间内抑制作用较好,且短时间共同暴露条件下Se能减弱蚯蚓对Cd的富集能力;基质Cd浓度对蚯蚓Se富集有抑制作用,且浓度越大抑制作用越强。Cd在蚯蚓亚细胞中的分布为细胞溶质S1>细胞碎片S2>固体颗粒S3,且Cd在不同亚细胞中的比例随土壤Cd、Se浓度和暴露时间延长而有所差异;14 d时,高Cd基质添加Se处理组蚓体S1中Cd占比均在85%以上,较7 d时有所增加,说明14 d暴露可能促进了Se对Cd的解毒。此外,适量Se (5 mg·kg-1)添加提高了蚯蚓超氧化物歧化酶和过氧化氢酶活性、促进了谷胱甘肽合成、抑制了丙二醛产生,有助于提高Cd污染胁迫下蚯蚓的抗氧化免疫。综上,Se通过促进Cd在蚯蚓细胞溶质中的分布解毒和增强抗氧化防御降低了蚯蚓所受污染胁迫压力,本研究为缓解土壤生物所受污染胁迫提供了新的研究思路与方法。
  • 加载中
  • CHEN R S, DE SHERBININ A, YE C, et al. China's soil pollution:farms on the frontline[J]. Science, 2014, 344(6185):691.
    LARSON C. Environmental science. China gets serious about its pollutant-laden soil[J]. Science, 2014, 343(6178):1415-1416.
    ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China:current status and mitigation strategies[J]. Environmental science&technology, 2015, 49(2):750-759.
    DU B Y, ZHOU J, LU B X, et al. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China[J]. Science of the total environment, 2020, 720:137585.
    邹长伟,江玉洁,黄虹.重金属镉的分布、暴露与健康风险评价研究进展[J].生态毒理学报, 2022, 17(6):225-243.

    ZOU C W, JIANG Y J, HUANG H. Distribution, exposure and health risk assessment of heavy metal cadmium:a review[J]. Asian journal of ecotoxicology, 2022, 17(6):225-243.

    段桂兰,崔慧灵,杨雨萍,等.重金属污染土壤中生物间相互作用及其协同修复应用[J].生物工程学报, 2020, 36(3):455-470.

    DUAN G L, CUI H L, YANG Y P, et al. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils[J]. Chinese journal of biotechnology, 2020, 36(3):455-470.

    YANG L, LI N, KANG Y C, et al. Selenium alleviates toxicity in Amaranthus hypochondriacus by modulating the synthesis of thiol compounds and the subcellular distribution of cadmium[J]. Chemosphere, 2022, 291:133108.
    HUANG C D, ZHANG X L, WANG K, et al. Evidence for the metal resistance of earthworm Eisenia fetida across generations (F1 and F2) under laboratory metal exposure[J]. Journal of hazardous materials, 2022, 425:128006.
    HUANG C D, GE Y, SHEN Z Q, et al. Reveal the metal handling and resistance of earthworm Metaphire californica with different exposure history through toxicokinetic modeling[J]. Environmental pollution, 2021, 289:117954.
    RAYMAN M P. Selenium and human health[J]. The lancet, 2012, 379(9822):1256-1268.
    ULLAH H, LIU G J, YOUSAF B, et al. Developmental selenium exposure and health risk in daily foodstuffs:a systematic review and meta-analysis[J]. Ecotoxicology and environmental safety, 2018, 149:291-306.
    岳士忠.赤子爱胜蚓对硒的富集转化及其活性成分生物功能研究[D].北京:中国农业大学, 2019:37-84. YUE S Z. Bioaccumulation and transformation of selenium by Eisenia fetida and the biological function of its active components[D]. Beijing:China Agriculture University, 2019:37

    -84.

    WANG R P, YUE S Z, HUANG C D, et al. Uptake, distribution, and elimination of selenite in earthworm Eisenia fetida at sublethal concentrations based on toxicokinetic model[J]. Science of the total environment, 2023, 858:159632.
    XU Q Y, SHAO X Q, SHI Y J, et al. Is selenium beneficial or detrimental to earthworm?Growth and metabolism responses of Eisenia fetida to Na2SeO3 exposure[J]. Science of the total environment, 2022, 807(Pt 2):150770.
    GAN X Y, HUANG J C, ZHANG M P, et al. Remediation of selenium-contaminated soil through combined use of earthworm Eisenia fetida and organic materials[J]. Journal of hazardous materials, 2021, 405:124212.
    SNIDER G W, RUGGLES E, KHAN N, et al. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase:comparison of selenium and sulfur enzymes[J]. Biochemistry, 2013, 52(32):5472-5481.
    WYATT L H, DIRINGER S E, ROGERS L A, et al. Antagonistic growth effects of mercury and selenium in Caenorhabditis elegans are chemical-species-dependent and do not depend on internal Hg/Se ratios[J]. Environmental science&technology, 2016, 50(6):3256-3264.
    Organization for Economic Co-operation and Development (OECD). Test No. 317:bioaccumulation in terrestrial oligochaetes[S]. Paris:OECD, 2010.
    YUE S Z, HUANG C D, WANG R P, et al. Selenium toxicity, bioaccumulation, and distribution in earthworms (Eisenia fetida) exposed to different substrates[J]. Ecotoxicology and environmental safety, 2021, 217:112250.
    赵丽,邱江平,沈嘉林,等.重金属镉、铜对蚯蚓的急性毒性试验[J].上海交通大学学报(农业科学版), 2005, 23(4):366-370. ZHAO L, QIU J P, SHEN J L, et al. Acute toxicity of heavy metal cadmium and copper to earthworms[J]. Journal of Shanghai Jiao Tong University (agricultural science), 2005, 23(4):366-370.
    WANG K, QIAO Y H, ZHANG H Q, et al. Influence of metal-contamination on distribution in subcellular fractions of the earthworm (Metaphire californica) from Hunan Province, China[J]. Journal of environmental sciences, 2018, 73:127-137.
    YUE S Z, WANG R P, HUANG C D, et al. Toxicokinetics of selenate in earthworm sub-tissues and potential bio-accessibility assessment of earthworm-derived selenium[J]. Ecotoxicology and environmental safety, 2024, 281:116643.
    TANG R G, LAN P, DING C F, et al. A new perspective on the toxicity of arsenic-contaminated soil:tandem mass tag proteomics and metabolomics in earthworms[J]. Journal of hazardous materials, 2020, 398:122825.
    穆磊,吴星,陈红星,等.硒预暴露对夹杂带丝蚓铜累积及毒性的影响[J].生态学杂志, 2017, 36(8):2282-2288.

    MU L, WU X, CHEN H X, et al. Effects of pre-exposure to selenium on the accumulation and toxicity of copper in Lumbriculus variegatus[J]. Chinese journal of ecology, 2017, 36(8):2282-2288.

    杨莹,王志敏,杜晶晶,等.砷对蚯蚓的滤纸接触毒性及硒的调节作用[J].中国农学通报, 2024, 40(17):49-55.

    YANG Y, WANG Z M, DU J J, et al. The contact toxicity of arsenic to earthworms and regulatory effect of selenium[J]. Chinese agricultural science bulletin, 2024, 40(17):49-55.

    MARCHÁN-MORENO C, QUEIPO-ABAD S, CORNS W T, et al. Assessment of dietary selenium and its role in mercury fate in cultured fish rainbow trout with two sustainable aquafeeds[J]. Food chemistry, 2024, 447:138865.
    MONIRUZZAMAN M, PARK G, YUN H, et al. Synergistic effects of dietary vitamin E and selenomethionine on growth performance and tissue methylmercury accumulation on mercury-induced toxicity in juvenile olive flounder, Paralichthys olivaceus(Temminck et Schlegel)[J]. Aquaculture research, 2017, 48(2):570-580.
    IBRAHIM A T A, BANAEE M, SUREDA A. Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus[J]. Comparative biochemistry and physiology part C:toxicology&pharmacology, 2019, 225:108583.
    LUO K, ZHOU L Y, XIE C, et al. High-fidelity fluorescent probes for visualizing the inhibitory behavior of selenium on cadmium uptake in rice[J]. Journal of hazardous materials, 2023, 457:131748.
    WU K Y, WANG L Z, WU Z H, et al. Selenite reduced cadmium uptake, interfered signal transduction of endogenous phytohormones, and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique, transcriptome and metabolome[J]. Plant physiology and biochemistry, 2024, 206:108107.
    ULLAH S, DEPAR N, KHAN D, et al. Selenate and selenite induced differential morphophysiological modifications to mitigate arsenic toxicity and uptake by wheat[J]. Soil and sediment contamination:an international journal, 2024, 33(3):331-352.
    SHI W Y, SUN S B, LIU H W, et al. Guiding bar motif of thioredoxin reductase 1 modulates enzymatic activity and inhibitor binding by communicating with the co-factor FAD and regulating the flexible C-terminal redox motif[J]. Redox biology, 2024, 70:103050.
    WANG Y, WU Y C, LUO K, et al. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney[J]. Food and chemical toxicology, 2013, 58:61-67.
    TOMZA-MARCINIAK A, PILARCZYK B, DROZD R, et al. Selenium and mercury concentrations, Se:Hg molar ratios and their effect on the antioxidant system in wild mammals[J]. Environmental pollution, 2023, 322:121234.
    赵骞,刘桐序,李琦,等.硒对铅中毒诱导蛋鸡肾脏炎症损伤缓解作用研究[J].东北农业大学学报, 2021, 52(9):47-54.

    ZHAO Q, LIU T X, LI Q, et al. Effects of selenium relieving lead-induced inflammation in kidneys of laying hens[J]. Journal of Northeast Agricultural University, 2021, 52(9):47-54.

    RAHMAN M M, HOSSAIN K F B, BANIK S, et al. Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations:a review[J]. Ecotoxicology and environmental safety, 2019, 168:146-163.
    HUANG G X, DING C F, LI Y S, et al. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.)[J]. Journal of hazardous materials, 2020, 398:122860.
    COEURDASSIER M, SCHEIFLER R, DE VAUFLEURY A, et al. Earthworms influence metal transfer from soil to snails[J]. Applied soil ecology, 2007, 35(2):302-310.
    VIJVER M G, WOLTERBEEK H T, VINK J P M, et al. Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body[J]. Science of the total environment, 2005, 340(1/2/3):271-280.
    SUN H J, RATHINASABAPATHI B, WU B, et al. Arsenic and selenium toxicity and their interactive effects in humans[J]. Environment international, 2014, 69:148-158.
    ZWOLAK I. The role of selenium in arsenic and cadmium toxicity:an updated review of scientific literature[J]. Biological trace element research, 2020, 193(1):44-63.
    MORGAN A J, TURNER M P, MORGAN J E. Morphological plasticity in metal-sequestering earthworm chloragocytes:morphometric electron microscopy provides a biomarker of exposure in field populations[J]. Environmental toxicology and chemistry, 2002, 21(3):610-618.
    MORGAN J E, MORGAN A J. The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site[J]. Environmental pollution, 1998, 99(2):167-175.
    BEDNARSKA A J,ŚWIĄTEK Z. Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour[J]. Ecotoxicology and environmental safety, 2016, 133:82-89.
    PEDERSEN S A, KRISTIANSEN E, ANDERSEN R A, et al. Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor(Coleoptera)[J]. Comparative biochemistry and physiology part C:toxicology&pharmacology, 2007, 145(3):457-463.
    LI L Z, ZHOU D M, WANG P, et al. Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd-Pb interaction[J]. Ecotoxicology and environmental safety, 2008, 71(3):632-637.
    JASKULAK M, RORAT A, KURIANSKA-PIATEK L, et al. Species-specific Cd-detoxification mechanisms in lumbricid earthworms Eisenia andrei, Eisenia fetida and their hybrids[J]. Ecotoxicology and environmental safety, 2021, 208:111425.
    STVRZENBAUM S R, GEORGIEV O, JOHN MORGAN A, et al. Cadmium detoxification in earthworms:from genes to cells[J]. Environmental science&technology, 2004, 38(23):6283-6289.
    ZHANG X F, HU Z H, YAN T X, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and environmental safety, 2019, 171:352-360.
    LIEBEKE M, GARCIA-PEREZ I, ANDERSON C J, et al. Earthworms produce phytochelatins in response to arsenic[J]. PLoS One, 2013, 8(11):e81271.
    刘彩凤,史刚荣,余如刚,等.硅缓解植物镉毒害的生理生态机制[J].生态学报, 2017, 37(23):7799-7810.

    LIU C F, SHI G R, YU R G, et al. Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants:a review[J]. Acta ecologica sinica, 2017, 37(23):7799-7810.

    QIN Y Y, WANG Y R, SHI P T, et al. Interactive effects of selenium and arsenic on their accumulation, translocation, arsenic and selenium species, and subcellular distribution in Brassica vegetables[J]. Journal of soil science and plant nutrition, 2024, 24(2):4000-4016.
    WALLACE W G, LUOMA S N. Subcellular compartmentalization of Cd and Zn in two bivalves. Ⅱ. Significance of trophically available metal (TAM)[J]. Marine ecology progress series, 2003, 257:125-137.
    RAINBOW P S. Trace metal concentrations in aquatic invertebrates:why and so what?[J]. Environmental pollution, 2002, 120(3):497-507.
  • 加载中
计量
  • 文章访问数:  148
  • HTML全文浏览数:  148
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-09-05
杨慕源, 周升志, 杨莹, 姜珊, 周子涵, 符晓雯, 王瑞萍, 岳士忠. 镉胁迫下硒对蚓体镉富集、亚细胞分布和抗氧化指标的影响[J]. 生态毒理学报, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003
引用本文: 杨慕源, 周升志, 杨莹, 姜珊, 周子涵, 符晓雯, 王瑞萍, 岳士忠. 镉胁迫下硒对蚓体镉富集、亚细胞分布和抗氧化指标的影响[J]. 生态毒理学报, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003
YANG Muyuan, ZHOU Shengzhi, YANG Ying, JIANG Shan, ZHOU Zihan, FU Xiaowen, WANG Ruiping, YUE Shizhong. Effect of Selenium on Cadmium Bioaccumulation, Subcellular Distribution, and Antioxidant Indexes in Earthworms Under Cadmium Stress[J]. Asian journal of ecotoxicology, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003
Citation: YANG Muyuan, ZHOU Shengzhi, YANG Ying, JIANG Shan, ZHOU Zihan, FU Xiaowen, WANG Ruiping, YUE Shizhong. Effect of Selenium on Cadmium Bioaccumulation, Subcellular Distribution, and Antioxidant Indexes in Earthworms Under Cadmium Stress[J]. Asian journal of ecotoxicology, 2025, 20(1): 383-396. doi: 10.7524/AJE.1673-5897.20240905003

镉胁迫下硒对蚓体镉富集、亚细胞分布和抗氧化指标的影响

    通讯作者: 岳士忠,E-mail:change@ynu.edu.cn
    作者简介: 杨慕源(2004—),女,本科,研究方向为污染生态学,E-mail:1364352576@qq.com
  • 1. 山东省生物物理重点实验室, 德州学院生物物理研究院, 德州 253023;
  • 2. 德州学院别尔哥罗德食品科学学院, 德州 253023;
  • 3. 德州学院生命科学学院, 德州 253023
基金项目:

国家自然科学基金项目(32301418)

山东省高等学校大学生创新创业训练计划项目(S202310448127,X202410448066)

德州学院人才引进项目(2019XJRC328)

摘要: 为了解硒(Se)对重金属镉(Cd)污染土壤中蚯蚓所受胁迫的调节作用与机制,本研究以赤子爱胜蚓(Eisenia foetida)为研究对象,通过在Cd污染人工土壤中(150 mg·kg-1和300 mg·kg-1)添加外源Se (5 mg·kg-1和10 mg·kg-1)探究7 d和14 d其对蚯蚓生长、蚓体Cd累积与亚细胞分布和抗氧化指标的影响。结果表明:Cd能抑制蚯蚓生长且呈剂量-效应,Se在一定程度上缓解了Cd胁迫对生物量的抑制。7 d时Se有效抑制了暴露于污染土壤中的蚓体Cd累积和富集系数(BAFCd),而14 d时无显著影响,说明Se抑制蚓体Cd富集受暴露时间影响较大,短时间内抑制作用较好,且短时间共同暴露条件下Se能减弱蚯蚓对Cd的富集能力;基质Cd浓度对蚯蚓Se富集有抑制作用,且浓度越大抑制作用越强。Cd在蚯蚓亚细胞中的分布为细胞溶质S1>细胞碎片S2>固体颗粒S3,且Cd在不同亚细胞中的比例随土壤Cd、Se浓度和暴露时间延长而有所差异;14 d时,高Cd基质添加Se处理组蚓体S1中Cd占比均在85%以上,较7 d时有所增加,说明14 d暴露可能促进了Se对Cd的解毒。此外,适量Se (5 mg·kg-1)添加提高了蚯蚓超氧化物歧化酶和过氧化氢酶活性、促进了谷胱甘肽合成、抑制了丙二醛产生,有助于提高Cd污染胁迫下蚯蚓的抗氧化免疫。综上,Se通过促进Cd在蚯蚓细胞溶质中的分布解毒和增强抗氧化防御降低了蚯蚓所受污染胁迫压力,本研究为缓解土壤生物所受污染胁迫提供了新的研究思路与方法。

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回