基于文献计量的土壤重金属污染微生物修复研究现状分析
Analysis of the Research Status of Microbial Remediation of Soil Heavy Metal Contamination Based on Bibliometrics
-
摘要: 社会经济快速发展带来的土壤重金属污染问题日益严峻,对地球环境和生命健康构成了威胁。微生物修复由于其绿色、经济等优点受到国内外土壤重金属污染修复领域的广泛关注,但针对该领域相关研究的文献还缺乏系统整理。本文以中国知网CNKI全文数据和Web of Science核心合集文献资料为数据源,利用CiteSpace软件对2000—2023年国内外关于微生物修复土壤重金属污染领域的相关文献进行了可视化分析,结果显示:(1)在过去的20多年里,发文数量逐年增多,近年来呈迅速增长趋势。(2)中国在该研究领域具有较大优势,国内(中文文献)和国际(英文文献)分别初步形成了以中国科学院大学和中国科学院等为中心的合作机构;中英文文献作者群体呈大分散小集中的态势,分别形成了以黄巧云、Xu Heng等为主的作者群。(3)该领域研究前沿关键词随时间呈阶段性演变,且研究热点侧重不同,中英文文献分别聚焦微生物菌剂、生物炭、胞外聚合物、酶活以及复合污染、修复机制、微生物-植物联合修复、微生物响应等方向。(4)高被引文献大多属于综述类,系统归纳了土壤重金属污染微生物修复技术和机制。Abstract: The pollution of soil heavy metal caused by rapid socio-economic development has become increasingly serious and poses a threat to the earth’s environment and human health. Microbial remediation has received extensive attention in remediation of soil heavy metal pollution both domestically and internationally due to its advantages such as being environmentally friendly and cost-effective. However, there is still a lack of systematic organization in the literature on related research in this field. The China National Knowledge Infrastructure (CNKI) full text data and Web of Science core collection literature were used as data sources in the paper, and the CiteSpace software was applied to visualize and analyze domestic and international studies on microbial remediation of soil heavy metal pollution from 2000 to 2023. The results show that: (1) Over the past 20 years, there has been a continuous increase in the number of published papers, with a particularly rapid growth trend in recent years. (2) China has a great advantage in this field, and domestic and international cooperation institutions have been initially formed with the University of Chinese Academy of Sciences and Chinese Academy of Sciences as the centers, respectively. The author groups of Chinese and English literature are in the trend of large dispersion and small concentration, and form an author group dominated by Huang Qiaoyun and Xu Heng, respectively. (3) The keywords of the research frontiers in this field evolve over time, and the research hotspots of Chinese and English literature are different and separately focus on microbial agents, biochar, extracellular polymers, enzyme activity, and compound pollution, remediation mechanisms, microbial-vegetative remediation, microbial response, etc. (4) Most highly cited literature belongs to the review category, which systematically summarizes the microbial remediation technologies and mechanisms of soil heavy metal pollution.
-
Key words:
- heavy metals /
- soil /
- microbial remediation /
- bibliometrics
-
-
AYANGBENRO A S, BABALOLA O O. A new strategy for heavy metal polluted environments:a review of microbial biosorbents[J]. International journal of environmental research and public health, 2017, 14(1):94. GAUR N, FLORA G, YADAV M, et al. A review with recent advancements on bioremediation-based abolition of heavy metals[J]. Environmental science processes&impacts, 2014, 16(2):180-193. DIXIT R, WASIULLAH, MALAVIYA D, et al. Bioremediation of heavy metals from soil and aquatic environment:an overview of principles and criteria of fundamental processes[J]. Sustainability, 2015, 7(2):2189-2212. TAK H I, AHMAD F, BABALOLA O O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals[J]. Reviews of environmental contamination and toxicology, 2013, 223:33-52. 环境保护部,国土资源部.全国土壤污染状况调查公报(2014年4月17日)[J].环境教育, 2014(6):8-10. QIN G W, NIU Z D, YU J D, et al. Soil heavy metal pollution and food safety in China:effects, sources and removing technology[J]. Chemosphere, 2021, 267:129205. YUAN Y Q, XIANG M, LIU C Q, et al. Chronic impact of an accidental wastewater spill from a smelter, China:a study of health risk of heavy metal (loid) s via vegetable intake[J]. Ecotoxicology and environmental safety, 2019, 182:109401. HACHANI C, LAMHAMEDI M S, CAMESELLE C, et al. Effects of ectomycorrhizal fungi and heavy metals (Pb, Zn, and Cd) on growth and mineral nutrition of Pinus halepensis seedlings in North Africa[J]. Microorganisms, 2020, 8(12):2033. LI Z L, GONG Y Y, ZHAO D Y, et al. Simultaneous immobilization of multi-metals in a field contaminated acidic soil using carboxymethyl-cellulose-bridged nano-chlorapatite and calcium oxide[J]. Journal of hazardous materials, 2021, 407:124786. 袁正通,范晓丹,王雪琦,等.土壤重金属污染的微生物-植物联合修复技术研究进展[J].天津城建大学学报, 2023, 29(4):253-261. YUAN Z T, FAN X D, WANG X Q, et al. Research progress of microbe-plant combined remediation technology for heavy metal pollution of the soil[J]. Journal of Tianjin Chengjian University, 2023, 29(4):253-261.
SU C. A review on heavy metal contamination in the soil worldwide:situation, impact and remediation techniques[J]. Environmental skeptics and critics, 2014, 3(2):24. FULEKAR M, SINGH A, BHADURI A. Genetic engineering strategies for enhancing phytoremediation of heavy metals[J]. African journal of biotechnology, 2009, 8(4):529-535. BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal (loid) s contaminated soils:to mobilize or to immobilize?[J]. Journal of hazardous materials, 2014, 266:141-166. 施灿海,蓝蓉,黄乔云,等.尾矿污染研究进展的CiteSpace可视化计量分析[J].现代矿业, 2023, 39(8):220-227 , 236. SHI C H, LAN R, HUANG Q Y, et al. Cite space visual measurement analysis of tailings pollution research progress[J]. Modern mining, 2023, 39(8):220-227, 236.
NIAZI M A. Review of "CiteSpace:a practical guide for mapping scientific literature" by Chaomei Chen[J]. Complex adaptive systems modeling, 2016, 4(1):23. 孙雨生,仇蓉蓉,邓兴.国内知识图谱研究进展--基于CiteSpace Ⅱ的分析[J].现代情报, 2014, 34(1):84-88. SUN Y S, QIU R R, DENG X. Research development of mapping knowledge domains in China-Analysis based on CiteSpace Ⅱ[J]. Journal of modern information, 2014, 34(1):84-88.
胡鹏杰,杜彦锫,夏冰,等.基于Web of Science对土壤胶体影响重金属行为研究的计量分析[J].土壤学报, 2024, 61(2):445-455. HU P J, DU Y P, XIA B, et al. Bibliometric analysis of research on soil colloids affecting the behavior of heavy metals based on Web of Science[J]. Acta pedologica sinica, 2024, 61(2):445-455.
吴永红,靳少非.基于CiteSpace的重金属污染土壤修复研究文献计量分析[J].农业环境科学学报, 2020, 39(3):454-461. WU Y H, JIN S F. Bibliometric analysis of the repair of heavy metal-contaminated soil based on CiteSpace[J]. Journal of agro-environment science, 2020, 39(3):454-461.
严康,楼骏,汪海珍,等.污染场地研究现状与发展趋势:基于知识图谱的分析[J].土壤学报, 2021, 58(5):1234-1245. YAN K, LOU J, WANG H Z, et al. Research of contaminated sites based on knowledge graph analysis and its development trend[J]. Acta pedologica sinica, 2021, 58(5):1234-1245.
侯剑华,胡志刚. CiteSpace软件应用研究的回顾与展望[J].现代情报, 2013, 33(4):99-103. HOU J H, HU Z G. Review on the application ofCiteSpace at home and abroad[J]. Journal of modern information, 2013, 33(4):99-103.
CHEN C M, IBEKWE-SANJUAN F, HOU J H. The structure and dynamics of cocitation clusters:a multiple-perspective cocitation analysis[J]. Journal of the American Society for Information Science and Technology, 2010, 61(7):1386-1409. 管秀静,苏燕,阿娜尔,等.农田土壤重金属污染修复研究进展-基于CiteSpace知识图谱分析[J].土壤通报, 2024, 55(2):573-583. GUAN X J, SU Y, A N E, et al. Research progress on remediation of heavy metal pollution in farmland soils at home and abroad-Based on CiteSpace knowledge map analysis[J]. Chinese journal of soil science, 2024, 55(2):573-583.
SHARMA P K, BALKWILL D L, FRENKEL A, et al. A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide[J]. Applied and environmental microbiology, 2000, 66(7):3083-3087. 杜志敏,赵晶玉,丁娅,等.生物炭基微生物菌剂修复重金属污染土壤研究[J].应用化工, 2024, 53(5):1160-1165. DU Z M, ZHAO J Y, DING Y, et al. Study on the effects of biochar-based microbial agents on plant absorption of heavy metals and soil microorganisms[J]. Applied chemical industry, 2024, 53(5):1160-1165.
杨文玲,杜志敏,孙召华,等.芽孢杆菌在重金属污染土壤修复中的研究进展[J].环境污染与防治, 2021, 43(6):759-763. YANG W L, DU Z M, SUN Z H, et al. Research progress of Bacillus in remediation of heavy metal contaminated soil[J]. Environmental pollution&control, 2021, 43(6):759-763.
OJUEDERIE O B, BABALOLA O O. Microbial and plant-assisted bioremediation of heavy metal polluted environments:a review[J]. International journal of environmental research and public health, 2017, 14(12):1504. 胡振华,王祥宝,王炳源,等.一株耐铬细菌的分离鉴定及其对Cr (Ⅵ)的抗性[J].化学工程, 2024, 52(2):12-16 , 49. HU Z H, WANG X B, WANG B Y, et al. Isolation and identification of a chromium-resistant bacterium and its resistance to Cr (Ⅵ)[J]. Chemical engineering (China), 2024, 52(2):12-16, 49.
曹心德,魏晓欣,代革联,等.土壤重金属复合污染及其化学钝化修复技术研究进展[J].环境工程学报, 2011, 5(7):1441-1453. CAO X D, WEI X X, DAI G L, et al. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils:a review[J]. Chinese journal of environmental engineering, 2011, 5(7):1441-1453.
杨贵琼,李慧君,卫婷,等.生物炭剂量对土壤镉形态和细菌群落的影响[J].环境科学与技术, 2023, 46(11):102-111. YANG G Q, LI H J, WEI T, et al. A novel biochar for soil remediation:effects of its dosage on Cd forms and bacterial communities in soil[J]. Environmental science&technology, 2023, 46(11):102-111.
余雪梅,彭书明,王洪婷,等.耐镉芽孢杆菌对Cd2+的吸附机制[J].江苏农业科学, 2019, 47(20):293-297. YU X M, PENG S M, YU X M, et al. Mechanism of Cd (Ⅱ) biosorption by cadmium-tolerant Bacillus sp.[J]. Jiangsu agricultural sciences, 2019, 47(20):293-297.
徐文婷,陈国梁,屈志慧,等.微生物在镉污染土壤修复中的应用及其作用机理[J].生物工程学报, 2023, 39(7):2612-2623. XU W T, CHEN G L, QU Z H, et al. Microbial remediation of cadmium-contaminated soils and its mechanisms:a review[J]. Chinese journal of biotechnology, 2023, 39(7):2612-2623.
WEI T, LI X, LI H, et al. The potential effectiveness of mixed bacteria-loaded biochar/activated carbon to remediate Cd, Pb co-contaminated soil and improve the performance of pakchoi plants[J]. Journal of hazardous materials, 2022, 435:129006. WU R F, LONG M, TAI X S, et al. Microbiological inoculation with and without biochar reduces the bioavailability of heavy metals by microbial correlation in pig manure composting[J]. Ecotoxicology and environmental safety, 2022, 248:114294. 殷柏轩,孙水裕,黄宇,等. Pseudomonas putida胞外聚合物吸附重金属镍的空间差异性及其作用机理[J].环境科学学报, 2024, 44(5):25-36. YIN B X, SUN S Y, HUANG Y, et al. Spatial differences and mechanism of Ni (Ⅱ) adsorption by extracellular polymers of Pseudomonas putida[J]. Acta scientiae circumstantiae, 2024, 44(5):25-36.
辛梅芬.肠杆菌胞外聚合物对镉铅吸附特性研究[D].桂林:广西师范大学, 2022:30-81. AN Y J, KIM M. Effect of antimony on the microbial growth and the activities of soil enzymes[J]. Chemosphere, 2009, 74(5):654-659. CHAI L Y, HUANG S H, YANG Z H, et al. Cr (Ⅵ) remediation by indigenous bacteria in soils contaminated by chromium-containing slag[J]. Journal of hazardous materials, 2009, 167(1/2/3):516-522. FU J M, MAI B X, SHENG G Y, et al. Persistent organic pollutants in environment of the Pearl River Delta, China:an overview[J]. Chemosphere, 2003, 52(9):1411-1422. LIU S H, ZENG G M, NIU Q Y, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi:a mini review[J]. Bioresource technology, 2017, 224:25-33. MALIK A. Metal bioremediation through growing cells[J]. Environment international, 2004, 30(2):261-278. YANG T, CHEN M L, WANG J H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance[J]. TrAC trends in analytical chemistry, 2015, 66:90-102. SRIVASTAVA S, AGRAWAL S B, MONDAL M K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin[J]. Environmental science and pollution research international, 2015, 22(20):15386-15415. ABBAS S H, ISMAIL I M, MOSTAFA T M. et al. Biosorption of heavy metals:a review[J]. Journal of chemical technology&biotechnology, 2014, 3(4):74-102 PUNAMIYA P, DATTA R, SARKAR D, et al. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass Chrysopogon zizanioides(L.)[J]. Journal of hazardous materials, 2010, 177(1/2/3):465-474. JANEESHMA E, PUTHUR J T. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants[J]. Archives of microbiology, 2020, 202(1):1-16. LIU H K, WANG C, XIE Y L, et al. Ecological responses of soil microbial abundance and diversity to cadmium and soil properties in farmland around an enterprise-intensive region[J]. Journal of hazardous materials, 2020, 392:122478. XU Y L, SESHADRI B, SARKAR B, et al. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil[J]. Science of the total environment, 2018, 621:148-159. ZHAO X Q, HUANG J, LU J, et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicology and environmental safety, 2019, 170:218-226. YIN H Q, NIU J J, REN Y H, et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination[J]. Scientific reports, 2015, 5:14266. 党秀丽,阿娜尔,苏燕,等.基于文献计量法对场地土壤重金属污染修复研究进展的知识图谱分析[J].土壤通报, 2024, 55(1):277-287. DANG X L, A N E, SU Y, et al. Knowledge graph analysis of the remediation research progress for heavy metal contaminated soil based on bibliometric method[J]. Chinese journal of soil science, 2024, 55(1):277-287.
BAE W, MEHRA R K, MULCHANDANI A, et al. Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury[J]. Applied and environmental microbiology, 2001, 67(11):5335-5338. GUO J K, DING Y Z, FENG R W, et al. Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in SouthEast China[J]. Antonie van leeuwenhoek, 2015, 107(6):1591-1598. 冯衍,王章凯,余雪巍,等.基于Web of Science对土壤介质中抗生素抗性基因的文献计量分析[J].生态毒理学报, 2023, 18(6):302-313. FENG Y, WANG Z K, YU X W, et al. A bibliometric analysis of antibiotic resistance genes in soil media based on Web of Science[J]. Asian journal of ecotoxicology, 2023, 18(6):302-313.
ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3440. IGIRI B E, OKODUWA S I R, IDOKO G O, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater:a review[J]. Journal of toxicology, 2018, 2018(1):2568038. VERMA S, KUILA A. Bioremediation of heavy metals by microbial process[J]. Environmental technology&innovation, 2019, 14:100369. YIN K, WANG Q N, LYU M, et al. Microorganism remediation strategies towards heavy metals[J]. Chemical engineering journal, 2019, 360:1553-1563. GUPTA P, DIWAN B. Bacterial exopolysaccharide mediated heavy metal removal:a review on biosynthesis, mechanism and remediation strategies[J]. Biotechnology reports, 2016, 13:58-71. ETESAMI H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues:mechanisms and future prospects[J]. Ecotoxicology and environmental safety, 2018, 147:175-191. JIANG N J, LIU R, DU Y J, et al. Microbial induced carbonate precipitation for immobilizing Pb contaminants:toxic effects on bacterial activity and immobilization efficiency[J]. Science of the total environment, 2019, 672:722-731. -

计量
- 文章访问数: 179
- HTML全文浏览数: 179
- PDF下载数: 59
- 施引文献: 0