微塑料对啮齿动物毒性效应研究进展

边博浩, 吕艺华, 苏姗娜, 吉日豪, 高艳荣, 赵子龙, 贾玉巧. 微塑料对啮齿动物毒性效应研究进展[J]. 生态毒理学报, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002
引用本文: 边博浩, 吕艺华, 苏姗娜, 吉日豪, 高艳荣, 赵子龙, 贾玉巧. 微塑料对啮齿动物毒性效应研究进展[J]. 生态毒理学报, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002
Bian Bohao, Lv Yihua, Su Shanna, Ji Rihao, Gao Yanrong, Zhao Zilong, Jia Yuqiao. Research Progress on Toxicity of Microplastics to Rodents[J]. Asian journal of ecotoxicology, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002
Citation: Bian Bohao, Lv Yihua, Su Shanna, Ji Rihao, Gao Yanrong, Zhao Zilong, Jia Yuqiao. Research Progress on Toxicity of Microplastics to Rodents[J]. Asian journal of ecotoxicology, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002

微塑料对啮齿动物毒性效应研究进展

    作者简介: 边博浩(1999-),男,硕士研究生,研究方向为环境毒理学,E-mail:1524667968@qq.com
    通讯作者: 赵子龙,E-mail:zhaozilong1981@126.com;  贾玉巧,E-mail:jiayuq1713@126.com
  • 基金项目:

    内蒙古自然科学基金项目(2021MS08046);内蒙古自治区卫生健康委医疗卫生科技计划项目(202201382);包头医学院科学研究基金项目(BYJJ-DXK2022018)

  • 中图分类号: X171.5

Research Progress on Toxicity of Microplastics to Rodents

    Corresponding authors: Zhao Zilong ;  Jia Yuqiao
  • Fund Project:
  • 摘要: 全球塑料产量连年激增。自然环境和生活环境中的塑料通过各种外力作用分解成<5 mm的微塑料,并广泛存在于大气、水体、土壤甚至于瓶装水和茶叶中。微塑料主要通过吸入和摄入2种方式进入人体,并对人体产生潜在的健康风险。以往的水生生物微塑料健康风险模型不能很好地反映人体微塑料暴露的健康风险。为此,本文基于已有的研究,系统阐述了微塑料暴露在啮齿动物中的蓄积部位和蓄积量及其影响因素,毒性效应影响因素、单一微塑料暴露和与其他污染物联合暴露下的毒性效应及机制,并展望了未来的研究方向,为进一步完善啮齿动物微塑料健康风险模型和人体微塑料暴露健康风险评估提供了科学线索和参考。
  • 加载中
  • Zhu X P, Ran W, Teng J, et al. Microplastic pollution in nearshore sediment from the Bohai Sea coastline [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4):665-670
    Suaria G, Avio C G, Mineo A, et al. The Mediterranean Plastic Soup:Synthetic polymers in Mediterranean surface waters [J]. Scientific Reports, 2016, 6:37551
    Qiao J Y, Chen R, Wang M J, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction [J]. Nanoscale, 2021, 13(19):8806-8816
    Fang M Z, Liao Z L, Ji X L, et al. Microplastic ingestion from atmospheric deposition during dining/drinking activities [J]. Journal of Hazardous Materials, 2022, 432:128674
    Chen F J, Lao Q B, Liu M Y, et al. Impact of intensive mariculture activities on microplastic pollution in a typical semi-enclosed bay:Zhanjiang Bay [J]. Marine Pollution Bulletin, 2022, 176:113402
    Wang K, Chen W, Tian J Y, et al. Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China [J]. The Science of the Total Environment, 2022, 828:154544
    Peng B, Hossain K B, Lin Y, et al. Assessment and sources identification of microplastics, PAHs and OCPs in the Luoyuan Bay, China:Based on multi-statistical analysis [J]. Marine Pollution Bulletin, 2022, 175:113351
    Rist S, Carney Almroth B, Hartmann N B, et al. A critical perspective on early communications concerning human health aspects of microplastics [J]. The Science of the Total Environment, 2018, 626:720-726
    Li Y N, Peng L, Fu J X, et al. A microscopic survey on microplastics in beverages:The case of beer, mineral water and tea [J]. The Analyst, 2022, 147(6):1099-1105
    Diaz-Basantes M F, Nacimba-Aguirre D, Conesa J A, et al. Presence of microplastics in commercial canned tuna [J]. Food Chemistry, 2022, 385:132721
    Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology:An emerging discipline evolving from studies of ultrafine particles [J]. Environmental Health Perspectives, 2005, 113(7):823-839
    Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood [J]. Environment International, 2022, 163:107199
    Cheng H D, Duan Z H, Wu Y H, et al. Immunotoxicity responses to polystyrene nanoplastics and their related mechanisms in the liver of zebrafish (Danio rerio) larvae [J]. Environment International, 2022, 161:107128
    Alnajar N, Jha A N, Turner A. Impacts of microplastic fibres on the marine mussel, Mytilus galloprovinciallis [J]. Chemosphere, 2021, 262:128290
    Liu Z Q, Zhuan Q R, Zhang L Y, et al. Polystyrene microplastics induced female reproductive toxicity in mice [J]. Journal of Hazardous Materials, 2022, 424(Pt C):127629
    Fan X P, Wei X J, Hu H L, et al. Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice [J]. Chemosphere, 2022, 288(Pt 3):132607
    Schwarzfischer M, Niechcial A, Lee S S, et al. Ingested nano- and microsized polystyrene particles surpass the intestinal barrier and accumulate in the body [J]. NanoImpact, 2022, 25:100374
    Amereh F, Babaei M, Eslami A, et al. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity:From a hypothetical scenario to a global public health challenge [J]. Environmental Pollution, 2020, 261:114158
    Deng Y F, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure [J]. Scientific Reports, 2017, 7:46687
    Park E J, Han J S, Park E J, et al. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation [J]. Toxicology Letters, 2020, 324:75-85
    Liang B X, Zhong Y Z, Huang Y J, et al. Underestimated health risks:Polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis [J]. Particle and Fibre Toxicology, 2021, 18(1):20
    Sun W, Jin C H, Bai Y L, et al. Blood uptake and urine excretion of nano- and micro-plastics after a single exposure [J]. The Science of the Total Environment, 2022, 848:157639
    Wang Y L, Lee Y H, Hsu Y H, et al. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice [J]. Environmental Health Perspectives, 2021, 129(5):57003
    Fan Z, Xiao T, Luo H J, et al. A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics [J]. Environment International, 2022, 163:107223
    Fournier S B, D'Errico J N, Adler D S, et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy [J]. Particle and Fibre Toxicology, 2020, 17(1):55
    Mortensen L J, Oberdörster G, Pentland A P, et al. In vivo skin penetration of quantum dot nanoparticles in the murine model:The effect of UVR [J]. Nano Letters, 2008, 8(9):2779-2787
    Yang Z S, Bai Y L, Jin C H, et al. Evidence on invasion of blood, adipose tissues, nervous system and reproductive system of mice after a single oral exposure:Nanoplastics versus microplastics [J]. Biomedical and Environmental Sciences, 2022, 35(11):1025-1037
    Jin H B, Ma T, Sha X X, et al. Polystyrene microplastics induced male reproductive toxicity in mice [J]. Journal of Hazardous Materials, 2021, 401:123430
    Shan S, Zhang Y F, Zhao H W, et al. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice [J]. Chemosphere, 2022, 298:134261
    Tsou T Y, Lee S H, Kuo T H, et al. Distribution and toxicity of submicron plastic particles in mice [J]. Environmental Toxicology and Pharmacology, 2023, 97:104038
    Meng X M, Zhang J W, Wang W J, et al. Effects of nano- and microplastics on kidney:Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction [J]. Chemosphere, 2022, 288(Pt 3):132631
    Liu S, Wang Z Z, Xiang Q, et al. A comparative study in healthy and diabetic mice followed the exposure of polystyrene microplastics:Differential lipid metabolism and inflammation reaction [J]. Ecotoxicology and Environmental Safety, 2022, 244:114031
    Wang Y, Wang S C, Xu T, et al. A new discovery of polystyrene microplastics toxicity:The injury difference on bladder epithelium of mice is correlated with the size of exposed particles [J]. Science of the Total Environment, 2022, 821:153413
    Xie L L, Chen T L, Liu J Y, et al. Intestinal flora variation reflects the short-term damage of microplastic to the intestinal tract in mice [J]. Ecotoxicology and Environmental Safety, 2022, 246:114194
    Danso I K, Woo J H, Lee K. Pulmonary toxicity of polystyrene, polypropylene, and polyvinyl chloride microplastics in mice [J]. Molecules, 2022, 27(22):7926
    Wei Y X, Zhou Y, Long C L, et al. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-mediated imbalance of mTORC1 and mTORC2[J]. Environmental Pollution, 2021, 289:117904
    Xu W Q, Yuan Y Y, Tian Y, et al. Oral exposure to polystyrene nanoplastics reduced male fertility and even caused male infertility by inducing testicular and sperm toxicities in mice [J]. Journal of Hazardous Materials, 2023, 454:131470
    Xie X M, Deng T, Duan J F, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway [J]. Ecotoxicology and Environmental Safety, 2020, 190:110133
    Jin H B, Yan M H, Pan C, et al. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway [J]. Particle and Fibre Toxicology, 2022, 19(1):13
    Hou J Y, Lei Z M, Cui L L, et al. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats [J]. Ecotoxicology and Environmental Safety, 2021, 212:112012
    An R, Wang X F, Yang L, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats [J]. Toxicology, 2021, 449:152665
    Hu J N, Qin X L, Zhang J W, et al. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice [J]. Reproductive Toxicology, 2021, 106:42-50
    He Y J, Li Z, Xu T, et al. Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway [J]. Chemosphere, 2022, 307(Pt 1):135662
    Djouina M, Vignal C, Dehaut A, et al. Oral exposure to polyethylene microplastics alters gut morphology, immune response, and microbiota composition in mice [J]. Environmental Research, 2022, 212(Pt B):113230
    Lu L, Wan Z Q, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice [J]. The Science of the Total Environment, 2018, 631-632:449-458
    Li B Q, Ding Y F, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice [J]. Chemosphere, 2020, 244:125492
    Liu S, Li H, Wang J, et al. Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance [J]. The Science of the Total Environment, 2022, 833:155198
    Kwon W, Kim D, Kim H Y, et al. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo [J]. The Science of the Total Environment, 2022, 807(Pt 2):150817
    Jin H B, Yang C, Jiang C Y, et al. Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics [J]. Environmental Health Perspectives, 2022, 130(12):107002
    Liang B X, Huang Y J, Zhong Y Z, et al. Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson's disease-like neurodegeneration by causing energy metabolism disorders in mice [J]. Journal of Hazardous Materials, 2022, 430:128459
    Wang S W, Han Q, Wei Z L, et al. Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine [J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2022, 162:112904
    Lee C W, Hsu L F, Wu I L, et al. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice [J]. Journal of Hazardous Materials, 2022, 430:128431
    Liu Z, Bai Y, Ma T T, et al. Distribution and possible sources of atmospheric microplastic deposition in a valley basin city (Lanzhou, China) [J]. Ecotoxicology and Environmental Safety, 2022, 233:113353
    Lee S, Kang K K, Sung S E, et al. Toxicity study and quantitative evaluation of polyethylene microplastics in ICR mice [J]. Polymers, 2022, 14(3):402
    Cao J W, Xu R, Geng Y, et al. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice [J]. Environmental Pollution, 2023, 320:121068
    Xu D H, Ma Y H, Han X D, et al. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells [J]. Journal of Hazardous Materials, 2021, 417:126092
    Li X R, Zhang T T, Lv W T, et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice [J]. Ecotoxicology and Environmental Safety, 2022, 232:113238
    Wu Y L, Yao Y R, Bai H J, et al. Investigation of pulmonary toxicity evaluation on mice exposed to polystyrene nanoplastics:The potential protective role of the antioxidant N-acetylcysteine [J]. The Science of the Total Environment, 2023, 855:158851
    Huang D J, Zhang Y, Long J L, et al. Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation [J]. The Science of the Total Environment, 2022, 838(Pt 1):155937
    Wang Q, Wu Y L, Zhang W J, et al. Lipidomics and transcriptomics insight into impacts of microplastics exposure on hepatic lipid metabolism in mice [J]. Chemosphere, 2022, 308(Pt 3):136591
    Choi Y J, Park J W, Lim Y, et al. In vivo impact assessment of orally administered polystyrene nanoplastics:Biodistribution, toxicity, and inflammatory response in mice [J]. Nanotoxicology, 2021, 15(9):1180-1198
    Mu Y W, Sun J Y, Li Z Y, et al. Activation of pyroptosis and ferroptosis is involved in the hepatotoxicity induced by polystyrene microplastics in mice [J]. Chemosphere, 2022, 291(Pt 2):132944
    Shi J, Deng H P, Zhang M. Whole transcriptome sequencing analysis revealed key RNA profiles and toxicity in mice after chronic exposure to microplastics [J]. Chemosphere, 2022, 304:135321
    Xiong X, Gao L K, Chen C, et al. The microplastics exposure induce the kidney injury in mice revealed by RNA-seq [J]. Ecotoxicology and Environmental Safety, 2023, 256:114821
    李欢, 刘苏, 张静丽, 等. 聚苯乙烯微塑料对糖尿病小鼠肾脏的影响[J]. 中国环境科学, 2022, 42(3):1369-1378

    Li H, Liu S, Zhang J L, et al. Effects of polystyrene microplastics on kidney of diabetic mice [J]. China Environmental Science, 2022, 42(3):1369-1378(in Chinese)

    Lin P, Tong X, Xue F, et al. Polystyrene nanoplastics exacerbate lipopolysaccharide-induced myocardial fibrosis and autophagy in mice via ROS/TGF-β1/Smad [J]. Toxicology, 2022, 480:153338
    Li Z K, Zhu S X, Liu Q, et al. Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats [J]. Environmental Pollution, 2020, 265(Pt A):115025
    Zhao J J, Gomes D, Jin L X, et al. Polystyrene bead ingestion promotes adiposity and cardiometabolic disease in mice [J]. Ecotoxicology and Environmental Safety, 2022, 232:113239
    Wang X X, Jia Z Z, Zhou X R, et al. Nanoplastic-induced vascular endothelial injury and coagulation dysfunction in mice [J]. The Science of the Total Environment, 2023, 865:161271
    Wang B, Liang B X, Huang Y J, et al. Long-chain acyl carnitines aggravate polystyrene nanoplastics-induced atherosclerosis by upregulating MARCO [J]. Advanced Science, 2023, 10(19):e2205876
    Yang D Q, Zhu J D, Zhou X S, et al. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis [J]. Environment International, 2022, 166:107362
    Zhang Y B, Wang X Y, Zhao Y F, et al. Reproductive toxicity of microplastics in female mice and their offspring from induction of oxidative stress [J]. Environmental Pollution, 2023, 327:121482
    Jeong B, Baek J Y, Koo J, et al. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny [J]. Journal of Hazardous Materials, 2022, 426:127815
    Huang T, Zhang W J, Lin T T, et al. Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring [J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2022, 160:112803
    Han Y, Song Y, Kim G W, et al. No prominent toxicity of polyethylene microplastics observed in neonatal mice following intratracheal instillation to dams during gestational and neonatal period [J]. Toxicological Research, 2021, 37(4):443-450
    Liu X, Yang H K, Yan X Z, et al. Co-exposure of polystyrene microplastics and iron aggravates cognitive decline in aging mice via ferroptosis induction [J]. Ecotoxicology and Environmental Safety, 2022, 233:113342
    Feng Y Y, Yuan H B, Wang W Z, et al. Co-exposure to polystyrene microplastics and lead aggravated ovarian toxicity in female mice via the PERK/eIF2α signaling pathway [J]. Ecotoxicology and Environmental Safety, 2022, 243:113966
    Zou H, Chen Y, Qu H Y, et al. Microplastics exacerbate cadmium-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis [J]. International Journal of Molecular Sciences, 2022, 23(22):14411
    Deng Y F, Zhang Y, Qiao R X, et al. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus) [J]. Journal of Hazardous Materials, 2018, 357:348-354
    Zhang W Y, Sun X Y, Qi X, et al. Di-(2-ethylhexyl) phthalate and microplastics induced neuronal apoptosis through the PI3K/AKT pathway and mitochondrial dysfunction [J]. Journal of Agricultural and Food Chemistry, 2022, 70(35):10771-10781
    Deng Y F, Yan Z H, Shen R Q, et al. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus) [J]. Journal of Hazardous Materials, 2021, 406:124644
    Jiang P, Yuan G H, Jiang B R, et al. Effects of microplastics (MPs) and tributyltin (TBT) alone and in combination on bile acids and gut microbiota crosstalk in mice [J]. Ecotoxicology and Environmental Safety, 2021, 220:112345
    Tong X H, Li B Q, Li J, et al. Polyethylene microplastics cooperate with Helicobacter pylori to promote gastric injury and inflammation in mice [J]. Chemosphere, 2022, 288(Pt 2):132579
    Liu J, Lv M, Sun A Q, et al. Exposure to microplastics reduces the bioaccumulation of sulfamethoxazole but enhances its effects on gut microbiota and the antibiotic resistome of mice [J]. Chemosphere, 2022, 294:133810
    Sun W, Yan S, Meng Z Y, et al. Combined ingestion of polystyrene microplastics and epoxiconazole increases health risk to mice:Based on their synergistic bioaccumulation in vivo [J]. Environment International, 2022, 166:107391
    Bejgarn S, MacLeod M, Bogdal C, et al. Toxicity of leachate from weathering plastics:An exploratory screening study with Nitocra spinipes [J]. Chemosphere, 2015, 132:114-119
    Lithner D, Damberg J, Dave G, et al. Leachates from plastic consumer products:Screening for toxicity with Daphnia magna [J]. Chemosphere, 2009, 74(9):1195-1200
    Zhang W, Wang J Y, Liu Z Y, et al. Iron-dependent ferroptosis participated in benzene-induced anemia of inflammation through IRP1-DHODH-ALOX12 axis [J]. Free Radical Biology and Medicine, 2022, 193:122-133
    Sun R L, Xu K, Ji S B, et al. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice [J]. The Science of the Total Environment, 2020, 705:135879
    Karaulov A V, Smolyagin A I, Mikhailova I V, et al. Assessment of the combined effects of chromium and benzene on the rat neuroendocrine and immune systems [J]. Environmental Research, 2022, 207:112096
    Bourgois A, Saurat D, de Araujo S, et al. Nose-only inhalations of high-dose alumina nanoparticles/hydrogen chloride gas mixtures induce strong pulmonary pro-inflammatory response:A pilot study [J]. Inhalation Toxicology, 2021, 33(9-14):308-324
    Luo Y S, He Q K, Sun M X, et al. Acrylonitrile exposure triggers ovarian inflammation and decreases oocyte quality probably via mitochondrial dysfunction induced apoptosis in mice [J]. Chemico-Biological Interactions, 2022, 360:109934
    Deng Y F, Yan Z H, Shen R Q, et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut [J]. Environment International, 2020, 143:105916
    Wang J, Dai G D. Comparative effects of brominated flame retardants BDE-209, TBBPA, and HBCD on neurotoxicity in mice [J]. Chemical Research in Toxicology, 2022, 35(9):1512-1518
    Kazemi S, Mousavi Kani S N, Ghasemi-Kasman M, et al. Nonylphenol induces liver toxicity and oxidative stress in rat [J]. Biochemical and Biophysical Research Communications, 2016, 479(1):17-21
    Gąssowska M, Baranowska-Bosiacka I, Moczydłowska J, et al. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring [J]. Toxicology, 2016, 373:13-29
  • 加载中
计量
  • 文章访问数:  1535
  • HTML全文浏览数:  1535
  • PDF下载数:  148
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-06-16
边博浩, 吕艺华, 苏姗娜, 吉日豪, 高艳荣, 赵子龙, 贾玉巧. 微塑料对啮齿动物毒性效应研究进展[J]. 生态毒理学报, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002
引用本文: 边博浩, 吕艺华, 苏姗娜, 吉日豪, 高艳荣, 赵子龙, 贾玉巧. 微塑料对啮齿动物毒性效应研究进展[J]. 生态毒理学报, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002
Bian Bohao, Lv Yihua, Su Shanna, Ji Rihao, Gao Yanrong, Zhao Zilong, Jia Yuqiao. Research Progress on Toxicity of Microplastics to Rodents[J]. Asian journal of ecotoxicology, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002
Citation: Bian Bohao, Lv Yihua, Su Shanna, Ji Rihao, Gao Yanrong, Zhao Zilong, Jia Yuqiao. Research Progress on Toxicity of Microplastics to Rodents[J]. Asian journal of ecotoxicology, 2023, 18(6): 156-167. doi: 10.7524/AJE.1673-5897.20230616002

微塑料对啮齿动物毒性效应研究进展

    通讯作者: 赵子龙,E-mail:zhaozilong1981@126.com;  贾玉巧,E-mail:jiayuq1713@126.com
    作者简介: 边博浩(1999-),男,硕士研究生,研究方向为环境毒理学,E-mail:1524667968@qq.com
  • 1. 包头医学院公共卫生学院, 包头 014060;
  • 2. 包头市肿瘤医院, 包头 014060;
  • 3. 包头医学院第一附属医院, 包头 014060
基金项目:

内蒙古自然科学基金项目(2021MS08046);内蒙古自治区卫生健康委医疗卫生科技计划项目(202201382);包头医学院科学研究基金项目(BYJJ-DXK2022018)

摘要: 全球塑料产量连年激增。自然环境和生活环境中的塑料通过各种外力作用分解成<5 mm的微塑料,并广泛存在于大气、水体、土壤甚至于瓶装水和茶叶中。微塑料主要通过吸入和摄入2种方式进入人体,并对人体产生潜在的健康风险。以往的水生生物微塑料健康风险模型不能很好地反映人体微塑料暴露的健康风险。为此,本文基于已有的研究,系统阐述了微塑料暴露在啮齿动物中的蓄积部位和蓄积量及其影响因素,毒性效应影响因素、单一微塑料暴露和与其他污染物联合暴露下的毒性效应及机制,并展望了未来的研究方向,为进一步完善啮齿动物微塑料健康风险模型和人体微塑料暴露健康风险评估提供了科学线索和参考。

English Abstract

参考文献 (96)

返回顶部

目录

/

返回文章
返回