-
大规模工业发展排放出的大量挥发性有机化合物 (VOCs) [1]是形成臭氧和二次有机气溶胶的重要前驱体,会造成雾霾、光化学烟雾等大气污染[2]。部分VOCs具有刺激性和毒性[3],对人体器官和神经系统会造成严重危害。因此,为落实工业VOCs污染减排,挥发性有机物综合整治工程被列为“十四五”期间我国节能减排综合工作的重点工程[4]。
催化燃烧是利用催化剂的活化作用在较低温度下将有机物彻底氧化分解的一项高级氧化技术[5],其中微波与吸波型催化剂相结合的微波催化燃烧技术因微波热点效应而具有VOCs矿化效率高的优点[6]。因此,该技术与电加热的结合将成为高效处理工业VOCs废气的一项新技术。催化剂是催化燃烧技术的核心。目前,整体式蜂窝状催化剂因具有机械强度高、气流阻力小和传热传质效率高等优点,被广泛应用于实际工业VOCs废气的催化燃烧。整体式催化剂一般由载体、涂层和活性组分3部分构成,堇青石蜂窝体 (CH) 是目前最常用的催化剂载体,其价廉、耐高温且结构稳定;多组分过渡金属氧化物具有催化活性高、抗氯中毒能力强和价格远低于贵金属等优点,是当前活性组分研究的一大热点。CH负载CuMnCeOx的整体式催化剂已被课题组证实具有良好的VOCs微波催化燃烧活性[7]。催化剂涂层一般为TiO2、CeO2和γ-Al2O3等金属氧化物[8],起承载和分散活性组分颗粒的作用,涂层的表面积大小及其与载体结合的牢固度是影响催化剂性能的重要因素。γ-Al2O3具有比表面积大和多孔的特性,是整体式催化剂中最为广泛应用的涂层材料[9];溶胶凝胶法可在低温下制备纳米级均匀高活性γ-Al2O3薄膜,可控易行,对其理化性质、表面形貌、晶体结构、稳定性、抗中毒性和助催化作用等方面做了大量研究工作[10];适用于载体的活性涂层,但制备过程较为繁琐且易发生团聚,原材料昂贵,不易实现工业化生产[11]。目前,添加粘结剂以提高涂层附着力及均匀性是涂层制备中亟待解决的问题。聚乙二醇200 (PEG200) 是一种常用的有机粘合剂,其多羟基结构对铝溶胶分子具有分散性和粘结性,PEG200粘性和交联作用适中,对涂层的均匀性和结合性有良好的作用。田久英等[12]发现在溶胶中添加小分子量的PEG所制备的溶胶粒径小、涂层均匀、附着牢固且比表面积大,然而有机粘合剂在涂层中的作用机理及对催化剂结构与催化活性的影响尚有待进一步探究。
本研究在堇青石载体表面涂覆牢固的γ-Al2O3涂层,以PEG200为粘合剂来优化铝溶胶制备参数,探究PEG200在γ-Al2O3涂层中的作用机理及对CuMnCeOx/Al2O3/CH催化剂结构和催化性能的影响,以期为高性能催化剂的制备提供参考。
CuMnCeOx/Al2O3/CH催化剂的制备及微波催化燃烧VOCs性能
Preparation and performance of CuMnCeOx/Al2O3/CH catalyst in microwave catalytic combustion of VOCs
-
摘要: 针对整体式催化剂载体比表面积小和涂层脱落等问题,采用聚乙二醇200 (PEG200) 为粘结剂在蜂窝堇青石 (CH) 载体表面涂覆氧化铝 (Al2O3) 涂层,等体积浸渍法制备CuMnCeOx/Al2O3/CH催化剂,微波催化燃烧VOCs以考察其催化性能。结果显示,当酸铝比 (
$ {{\text{n}}_{{H^+}}}/{{\text{n}}_{A{l^{3+}}}} $ ) 为 0.262 5、$ {{\text{m}}_{PEG200}}/{{\text{m}}_{A{\text{l}}OOH}} $ 为1.5时,PEG200与AlOOH以氢键连接得到分散度高的铝溶胶,涂覆煅烧后PEG的造孔效应改善了载体形貌,为活性组分的负载提供了更多附着位点。在甲苯初始质量浓度1 000 mg·m−3和处理气量0.12 m3·h−1的实验条件下,CuMnCeOx/Al2O3/PEG(1.5)/CH催化剂降解甲苯的T90为200 ℃,比CuMnCeOx/CH和CuMnCeOx/Al2O3/PEG(0.0)/CH催化剂分别降低了62 ℃和53 ℃。SEM、BET和XRD等表征发现,片状γ-Al2O3涂层增大了载体比表面积和孔容,活性粒子更均匀地分布于催化剂表面,为VOCs氧化提供更多的有效活性位点;过渡金属氧化物表面丰富的活性位点和Cu+/Cu2+与Mn3+/Mn4+间价态转化产生的氧空穴提高了催化剂的催化活性和VOCs的矿化效果。该研究结果可为高活性催化剂的制备及其微波催化燃烧VOCs技术应用提供参考。-
关键词:
- 氧化铝涂层 /
- 聚乙二醇 /
- CuMnCeOx/Al2O3/CH催化剂 /
- 微波催化燃烧 /
- 挥发性有机物
Abstract: To solve the problems of small specific surface area and coating detachment for the carrier of monolithic catalyst, polyethylene glycol 200 (PEG200) was selected as a binder to prepare alumina (Al2O3) coating onto the surface of cordierite honeycomb (CH) carrier. Subsequently, CuMnCeOx/Al2O3/CH catalyst was prepared by an equivalent –volume impregnation method, and its activity was checked by microwave catalytic combustion of VOCs. Results showed that PEG200 and AlOOH were connected by hydrogen bond to form aluminum sol with high dispersion under conditions of 0.262 5 of acid aluminum ratio ($ {{\text{n}}_{{H^+}}}/{{\text{n}}_{A{l^{3+}}}} $ ) and 1.5 of mPEG200/mAlOOH, and the carrier morphology was improved by the pore-forming effect of PEG after coating and calcinations, which provided more attachment sites for the load of active components. Under experimental conditions of gas flow rate at 0.12m3·h−1 and initial concentration of toluene at 1 000 mg·m−3, the T90 of CuMnCeOx/Al2O3/PEG(1.5)/CH catalyst for toluene degradation was 200 ℃, which lessened by 62 ℃ and 53 ℃while compared with CuMnCeOx/CH catalyst and CuMnCeOx/Al2O3/PEG(0.0)/CH catalyst, respectively. Based on characterization of SEM, BET and XRD, it was revealed that plate-like γ-Al2O3 coating increased the specific surface area and pore volume of the carrier, which promoted more uniform distribution of active particles on the catalyst surface and provided more effective active sites for VOCs oxidation. The abundant active sites on transition metal oxides’ surface along with oxygen vacancies that generated by valence transformation between Cu+/Cu2+and Mn2+/Mn4+, enhanced effectively catalytic activity of the catalyst and mineralization performance of VOCs. The study provides a theoretical base on the preparation of high-performance catalyst and the application of microwave catalytic combustion technology for VOCs treatment. -
表 1 不同载体及催化剂的比表面积和孔径参数
Table 1. Specific surface area and pore size parameters of different carriers and catalysts
样品 比表面积/
(m2·g−1)平均孔径/
nm总孔体积/
(cm3·g−1)CH 0.83 8.28 0.000 6 Al2O3 140.71 4.04 0.215 0 Al2O3/PEG(1.5) 219.05 6.46 0.522 5 Al2O3/PEG(0.0)/CH 4.39 45.39 0.047 3 Al2O3/PEG(1.5)/CH 5.25 50.23 0.122 7 CuMnCeOx/CH-1 7.83 16.74 0.047 5 CuMnCeOx/CH-2 5.40 14.68 0.024 3 CuMnCeOx/Al2O3/PEG(1.5)/CH-1 10.12 46.34 0.218 5 CuMnCeOx/Al2O3/PEG(1.5)/CH-2 9.89 44.25 0.198 7 注:CuMnCeOx/CH-1、CuMnCeOx/Al2O3/PEG(1.5)/CH-1是新催化剂,CuMnCeOx/CH-2、CuMnCeOx/Al2O3/PEG(1.5)/CH-2是反应后催化剂。 -
[1] ZENG X T, TONG Y F, CUI L, et al. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China[J]. Journal of Environmrntal Management, 2017, 197: 507-521. [2] 孙豆, 王云刚, 戴艳俊, 等. 挥发性有机物治理现状及处理技术分析[J]. 动力工程学报, 2023, 43(5): 641-654. [3] 王博磊, 钟和香, 张晶, 等. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 124-132. [4] 国务院关于印发"十四五"节能减排综合工作方案的通知[R/OL]. (2022-01-24)[2023-08-23]中国政府网.https://www.mee.gov.cn/zcwj/gwywj/202201/t20220124_968089.shtml. [5] KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs)-A review[J]. Atmospheric Environment, 2016, 140: 117-134. [6] 陈瑾, 卜龙利, 张丹庆, 等. 微波催化燃烧印刷包装VOCs废气的矿化途径与降解机理[J]. 中国环境科学, 2021, 41(11): 5104-5113. [7] BO L L, SUN S Y. Microwave-assisted catalytic oxidation ofgaseous toluene with a Cu–Mn–Ce/cordierite honeycomb catalyst[J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392. [8] RODRIGUES C P, SILVA V T, SCHMAL M. Partial oxidation of ethanol on Cu/Alumina/cordierite monolith[J]. Catalysis Communications, 2009, 10(13): 1697-1701. [9] 牟维琦. 挥发性有机物催化燃烧整体式催化剂研究与中试方案设计[D]. 北京: 北京化工大学, 2010. [10] 安琴. 陶瓷蜂窝载体γ-Al2O3涂层的技术途径研究[D]. 北京: 北京理工大学, 2000. [11] 闫慧忠, 孔繁清, 赵增祺, 等. 溶胶凝胶法制备金属基γ-Al2O3活性涂层的研究[J]. 中国稀土学报, 2002(S2): 88-91. [12] 田久英, 卢菊生, 吴宏. 添加剂聚乙二醇对堇青石蜂窝陶瓷载体γ-Al2O3涂层性能的影响[J]. 高校化学工程学报, 2010, 24(1): 167-170. [13] 段宁, 张湘泰, 陆成龙, 等. 硝酸对溶胶-凝胶法制备AlOOH胶粒粒度的影响[J]. 硅酸盐通报, 2021, 40(9): 3105-3113. [14] 魏士龙, 闵敬丽, 井良霄. 浅谈氧化铝溶胶制备中溶胶黏度的变化[J]. 中国新技术新产品, 2022, 460(6): 66-68. [15] YANG W L, XU J L, NIU L, et al. Dispersion stability of nano-Sb2O3 particles modified with polyethylene glycol[J]. Particulate Science and Technology, 2018, 36(7): 844-849. [16] 梁文俊, 李庆磊, 任思达. 酸预处理对整体式催化剂载体性能的影响研究[J]. 中国环境科学, 2020, 40(12): 5237-5245. [17] 张佳瑾, 李建伟, 朱吉钦, 等. 助剂对Cu-Mn复合氧化物整体式催化剂催化低浓度甲烷燃烧反应性能的影响[J]. 催化学报, 2011, 32(8): 1380-1386. [18] WANG X X, ZHANG B Q, YU M X, et al. Enhanced microwave absorption capacity of hierarchical structural MnO2@NiMoO4 composites[J]. RSC Advances, 2016, 6(43): 36484-36490. [19] 刘鹏. 多孔矿物负载型/过渡金属复合型锰氧化物热催化氧化挥发性有机物的研究[D]. 北京: 中国科学院大学, 2019. [20] 胡旭睿, 郭斌, 王欣. 碳化硅负载Cu-Mn-CeO x 催化剂的制备及其微波场中诱导甲苯氧化分解[J]. 现代化工, 2018, 38(3): 133-137. [21] SUBEDI K N, PRASAI K, KOZICKI M N, et al. Structural origins of electronic conduction in amorphous copper-doped alumina[J]. Physical Review Materials, 2019, 3(6): 065605. [22] TAO W Y, BO L L, LI M X, et al. Preparation, characterization and activity of CuMnCeO x/CHC catalyst in microwave catalytic combustion of toluene[J]. Catalysis Letters, 2022, 152(12): 3795-3806. [23] MURUGAN B, RAMASWAMY A V, SRINIVAS D, et al. Nature of manganese species in Ce1- xMn xO2-δ solid solutions synthesized by the solution combustion route[J]. Chemistry of Materials, 2005, 17(15): 3983-3993. [24] ZUO S F, YANG P, WANG X Q. Efficient and environmentally friendly synthesis of AlFe-PILC-supported MnCe catalysts for benzene combustion[J]. ACS omega, 2017, 2(8): 5179-5186. doi: 10.1021/acsomega.7b00592 [25] CHEN J, CHEN X, YAN D X, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants[J]. Applied Catalysis B:Environmental, 2019, 250: 396-407. doi: 10.1016/j.apcatb.2019.03.042 [26] 汪旭文. 聚合物基复合材料导热吸波性能研究[D]. 武汉: 华中科技大学, 2021. [27] 张婷婷, 卜龙利, 宁轲, 等. 催化剂载体的优化及微波催化燃烧甲苯特性[J]. 环境工程学报, 2020, 14(12): 3468-3479. [28] 刘翻艳. 堇青石表面改性对Pd基整体式催化剂结构和性能的影响[D]. 北京: 北京化工大学, 2014. [29] GANDHE A R, REBELLO J S, FIGUEIREDO J L, et al. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate[J]. Applied Catalysis B Environmental, 2007, 72(1/2): 129-135. [30] MO J H, ZHANG Y P, XU Q J, et al. Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene[J]. Applied Catalysis B Environmental, 2009, 89(3/4): 570-576. [31] 李涛. VOCs催化燃烧催化剂的制备及反应系统研究[D]. 上海: 华东理工大学, 2015. [32] 陈嘉文, 孟庆洁, 翁小乐, 等. 多组分VOCs催化燃烧反应特征研究进展[J]. 能源环境保护, 2022, 36(6): 1-10. [33] SHAO J M, LIN F W, WANG Z H, et al. Low temperature catalytic ozonation of toluene in flue gas over Mn-based catalysts: Effect of support property and SO2/water vapor addition[J]. Applied Catalysis B Environmental, 2020, 266: 118662. [34] LEE J E, OK Y S, TSANG D. C. W, et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review[J]. Science of the Total Environment, 2020, 719: 137405.