[1] |
ZENG X T, TONG Y F, CUI L, et al. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China[J]. Journal of Environmrntal Management, 2017, 197: 507-521.
|
[2] |
孙豆, 王云刚, 戴艳俊, 等. 挥发性有机物治理现状及处理技术分析[J]. 动力工程学报, 2023, 43(5): 641-654.
|
[3] |
王博磊, 钟和香, 张晶, 等. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 124-132.
|
[4] |
国务院关于印发"十四五"节能减排综合工作方案的通知[R/OL]. (2022-01-24)[2023-08-23]中国政府网.https://www.mee.gov.cn/zcwj/gwywj/202201/t20220124_968089.shtml.
|
[5] |
KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs)-A review[J]. Atmospheric Environment, 2016, 140: 117-134.
|
[6] |
陈瑾, 卜龙利, 张丹庆, 等. 微波催化燃烧印刷包装VOCs废气的矿化途径与降解机理[J]. 中国环境科学, 2021, 41(11): 5104-5113.
|
[7] |
BO L L, SUN S Y. Microwave-assisted catalytic oxidation ofgaseous toluene with a Cu–Mn–Ce/cordierite honeycomb catalyst[J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392.
|
[8] |
RODRIGUES C P, SILVA V T, SCHMAL M. Partial oxidation of ethanol on Cu/Alumina/cordierite monolith[J]. Catalysis Communications, 2009, 10(13): 1697-1701.
|
[9] |
牟维琦. 挥发性有机物催化燃烧整体式催化剂研究与中试方案设计[D]. 北京: 北京化工大学, 2010.
|
[10] |
安琴. 陶瓷蜂窝载体γ-Al2O3涂层的技术途径研究[D]. 北京: 北京理工大学, 2000.
|
[11] |
闫慧忠, 孔繁清, 赵增祺, 等. 溶胶凝胶法制备金属基γ-Al2O3活性涂层的研究[J]. 中国稀土学报, 2002(S2): 88-91.
|
[12] |
田久英, 卢菊生, 吴宏. 添加剂聚乙二醇对堇青石蜂窝陶瓷载体γ-Al2O3涂层性能的影响[J]. 高校化学工程学报, 2010, 24(1): 167-170.
|
[13] |
段宁, 张湘泰, 陆成龙, 等. 硝酸对溶胶-凝胶法制备AlOOH胶粒粒度的影响[J]. 硅酸盐通报, 2021, 40(9): 3105-3113.
|
[14] |
魏士龙, 闵敬丽, 井良霄. 浅谈氧化铝溶胶制备中溶胶黏度的变化[J]. 中国新技术新产品, 2022, 460(6): 66-68.
|
[15] |
YANG W L, XU J L, NIU L, et al. Dispersion stability of nano-Sb2O3 particles modified with polyethylene glycol[J]. Particulate Science and Technology, 2018, 36(7): 844-849.
|
[16] |
梁文俊, 李庆磊, 任思达. 酸预处理对整体式催化剂载体性能的影响研究[J]. 中国环境科学, 2020, 40(12): 5237-5245.
|
[17] |
张佳瑾, 李建伟, 朱吉钦, 等. 助剂对Cu-Mn复合氧化物整体式催化剂催化低浓度甲烷燃烧反应性能的影响[J]. 催化学报, 2011, 32(8): 1380-1386.
|
[18] |
WANG X X, ZHANG B Q, YU M X, et al. Enhanced microwave absorption capacity of hierarchical structural MnO2@NiMoO4 composites[J]. RSC Advances, 2016, 6(43): 36484-36490.
|
[19] |
刘鹏. 多孔矿物负载型/过渡金属复合型锰氧化物热催化氧化挥发性有机物的研究[D]. 北京: 中国科学院大学, 2019.
|
[20] |
胡旭睿, 郭斌, 王欣. 碳化硅负载Cu-Mn-CeO x 催化剂的制备及其微波场中诱导甲苯氧化分解[J]. 现代化工, 2018, 38(3): 133-137.
|
[21] |
SUBEDI K N, PRASAI K, KOZICKI M N, et al. Structural origins of electronic conduction in amorphous copper-doped alumina[J]. Physical Review Materials, 2019, 3(6): 065605.
|
[22] |
TAO W Y, BO L L, LI M X, et al. Preparation, characterization and activity of CuMnCeO x/CHC catalyst in microwave catalytic combustion of toluene[J]. Catalysis Letters, 2022, 152(12): 3795-3806.
|
[23] |
MURUGAN B, RAMASWAMY A V, SRINIVAS D, et al. Nature of manganese species in Ce1- xMn xO2-δ solid solutions synthesized by the solution combustion route[J]. Chemistry of Materials, 2005, 17(15): 3983-3993.
|
[24] |
ZUO S F, YANG P, WANG X Q. Efficient and environmentally friendly synthesis of AlFe-PILC-supported MnCe catalysts for benzene combustion[J]. ACS omega, 2017, 2(8): 5179-5186. doi: 10.1021/acsomega.7b00592
|
[25] |
CHEN J, CHEN X, YAN D X, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants[J]. Applied Catalysis B:Environmental, 2019, 250: 396-407. doi: 10.1016/j.apcatb.2019.03.042
|
[26] |
汪旭文. 聚合物基复合材料导热吸波性能研究[D]. 武汉: 华中科技大学, 2021.
|
[27] |
张婷婷, 卜龙利, 宁轲, 等. 催化剂载体的优化及微波催化燃烧甲苯特性[J]. 环境工程学报, 2020, 14(12): 3468-3479.
|
[28] |
刘翻艳. 堇青石表面改性对Pd基整体式催化剂结构和性能的影响[D]. 北京: 北京化工大学, 2014.
|
[29] |
GANDHE A R, REBELLO J S, FIGUEIREDO J L, et al. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate[J]. Applied Catalysis B Environmental, 2007, 72(1/2): 129-135.
|
[30] |
MO J H, ZHANG Y P, XU Q J, et al. Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene[J]. Applied Catalysis B Environmental, 2009, 89(3/4): 570-576.
|
[31] |
李涛. VOCs催化燃烧催化剂的制备及反应系统研究[D]. 上海: 华东理工大学, 2015.
|
[32] |
陈嘉文, 孟庆洁, 翁小乐, 等. 多组分VOCs催化燃烧反应特征研究进展[J]. 能源环境保护, 2022, 36(6): 1-10.
|
[33] |
SHAO J M, LIN F W, WANG Z H, et al. Low temperature catalytic ozonation of toluene in flue gas over Mn-based catalysts: Effect of support property and SO2/water vapor addition[J]. Applied Catalysis B Environmental, 2020, 266: 118662.
|
[34] |
LEE J E, OK Y S, TSANG D. C. W, et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review[J]. Science of the Total Environment, 2020, 719: 137405.
|