-
甲醛是一种无色、有刺激性气味的气体,被国际癌症研究机构定义为一类致癌物质[1]。甲醛污染具有致癌风险大、污染源存在范围广[2]、释放周期长[3-4]等特点。调研表明,我国存在较普遍的住宅甲醛超标现象[5]。目前,针对甲醛的空气净化方案多以吸附技术为主。甲醛具有相对较高的蒸汽压 (25 ℃时为517 kPa) 和较低的沸点 (-19.5 ℃) ,因此吸附法对甲醛的净化效果远不如其他可挥发性有机化合物 (volatile organic compounds,VOCs) [6]。光催化技术的原理是利用一定波长的光线激发半导体催化剂,原位产生羟基自由基等强氧化还原性物种参与化学反应,是一种安全、高效、反应条件温和的绿色技术,在新能源合成和污染物降解领域具有广阔应用前景。
TiO2是研究最广泛的半导体光催化剂之一,具有较好的结构稳定性、储量丰富、无毒等特点。但传统TiO2由于量子效率低,在实际的室内空气净化过程中,存在催化剂易失活[7]和产生有害中间副产物[8]的问题。带隙调控是一种常见的改性思路,通过在晶格中掺杂金属或非金属元素,提高可见光响应能力和光催化性能。但掺杂过程通常比较困难[9],且掺杂元素可能会成为载流子的复合中心[10],有研究者通过引入氧空位来提高量子效率。CHEN等[11]最早通过高压氢化得到表面无序、带有氧空位的黑色TiO2,其能出现带尾状态,表现出较好的可见光响应能力和催化性能,同时研究了黑色TiO2的合成和结构特征。
制备黑色TiO2的方法众多,包括氢热处理、化学还原 、电化学还原、金属还原等[12]。常规的黑色TiO2合成需要在高压、还原性气氛条件下进行,操作复杂且成本高。为简化合成方法,KATAL等[13]直接在真空环境下退火合成黑色TiO2,并表现出与氢气煅烧相当的催化性能。本研究将采用溶胶-凝胶法在氩气下煅烧得到黑色TiO2,通过TEM、XRD、DRS、XPS等技术表征其结构特征,并测试其对甲醛的光催化净化效率。为进一步提高材料的表面传质效率,拟将黑色TiO2与活性炭复合,探究吸附-催化协同降解机制。最后,在相同工况下对比黑色TiO2/活性炭复合结构与传统净化材料的甲醛净化性能,为黑色TiO2/活性炭的长期甲醛净化效果提供参考。
黑色TiO2/活性炭复合材料的制备及其光催化净化甲醛性能
Preparation of black TiO2 / activated carbon and its photocatalytic purification performance for formaldehyde
-
摘要: 甲醛是最受关注的室内气态污染物之一。传统甲醛吸附类净化材料存在寿命短、二次污染、废弃物难处理等问题。以钛酸四丁酯为钛源,通过溶胶-凝胶法在氩气气氛下煅烧制备了黑色二氧化钛,采用TEM、XRD、DRS、XPS等技术手段表征了材料的物理、化学、光学特性,并利用连续流表面式光催化反应系统测试黑色TiO2的甲醛净化性能。结果表明,黑色TiO2存在表面无序层和氧空位等特征,并在紫外和可见光区域表现出更高的吸光度和更窄的带隙,紫外光下的甲醛单通净化效率可达78%。通过将活性炭与黑色TiO2复合,可进一步提升材料的甲醛净化效率,并得到在不同流速下活性炭的最佳负载量。黑色TiO2/活性炭与负载高锰酸钠的活性氧化铝经过16 h的长期性能测试对比,前者累计净化量是后者的1.5倍,且并未出现效率的衰减。本研究可为光催化技术在室内甲醛净化领域的应用提供参考。Abstract: Formaldehyde is one of the most widely concerned indoor gaseous pollutants. Traditional adsorption-based purification materials have the problems of short life-time, potential of secondary pollution and difficulty of waste disposal. In this study, black titanium dioxide was prepared by sol-gel calcination with tetrabutyl titanate as titanium source under argon atmosphere. The physical, chemical and optical properties of the prepared materials were characterized by TEM, XRD, DRS and XPS. Its formaldehyde purification performance was tested by continuous flow surface photocatalytic reaction system. The results show that black TiO2 has the characteristics of disordered surface layer and oxygen vacancy, and exhibits higher visible light absorbance and narrower band gap. Its single-pass purification efficiency of formaldehyde under ultraviolet light can reach 78%. By combining black TiO2 with activated carbon, the formaldehyde purification efficiency was further improved, and the optimal load of activated carbon at different flow rates were obtained. The long-term performance of black TiO2/ activated carbon and activated alumina loaded with potassium permanganate was compared for 16 hours, and the results show that the cumulative purification capacity of the former is 1.5 times that of the latter, and there is no efficiency decay. This study provides reference and comparison on material level for the application of photocatalytic technology in indoor formaldehyde purification.
-
Key words:
- black TiO2 /
- formaldehyde /
- photocatalysis
-
-
[1] International Agency for Research on Cancer. FORMALDEHYDE [EB/OL]. [2022-07-01]. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono100F-29.pdf,2018. [2] TANG X, BAI Y, DUONG A, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment international, 2009, 36(8): 1210-1224. [3] SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110(4): 2536-2572. doi: 10.1021/cr800399g [4] LIU X, YAN M, DUAN H. Characteristics of indoor volatile organic compounds in urban residential microenvironments in China[J]. Research of Environmental Sciences, 2012, 25(10): 1077-1084. [5] ZHUANG X, HU X, LU X, et al. Analysis on the pollution characteristics of formaldehyde and alkyl benzenes in indoor air[J]. China Safety Science Journal, 2008, 18(5). [6] ZHANG X, GAO B, CREAMER A, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. doi: 10.1016/j.jhazmat.2017.05.013 [7] CAO L X, GAO Z, SUIB S L, et al. Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration[J]. Journal of Catalysis, 2000, 196: 253-261. doi: 10.1006/jcat.2000.3050 [8] HODGSON A T, DESTAILLATS H, SULLIVAN D P, et al. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications[J]. Indoor Air, 2007, 17(4): 305-316. doi: 10.1111/j.1600-0668.2007.00479.x [9] LIN T, YANG C, WANG Z, et al. Effective nonmetal incorporation in black titania with enhanced solar energy utilization[J]. Energy & Environmental Science, 2014, 7(3): 967. [10] CHOI W, TERMIN A, HOFFMANN M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. Journal of Physical Chemistry, 1994, 98(51): 13669-13679. doi: 10.1021/j100102a038 [11] CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. doi: 10.1126/science.1200448 [12] ANDRONIC L, ENESCA A. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications[J]. Frontiers in Chemistry, 2020, 8: 565489. doi: 10.3389/fchem.2020.565489 [13] KATAL R, SALEHI M, FARAHANI M, et al. Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis[J]. ACS Applied Materials & Interfaces, 2018, 10(41). [14] DONG J, HAN J, LIU Y, et al. Defective black TiO2 synthesized via anodization for visible-light photocatalysis[J]. Acs Applied Materials & Interfaces, 2014, 6(3): 1385-1388. [15] WEI Z, WANG W, LI W, et al. Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance[J]. Angewandte Chemie-International Edition, 2021, 60: 8236-8242. doi: 10.1002/anie.202016170 [16] ABDULLA-AL-MAMUN M, KUSUMOTO Y, SHARIFUL ISLAM M, et al. Enhanced photocatalytic cytotoxic activity of Ag @ Fe-doped TiO2 nanocomposites against human epithelial carcinoma cells[J]. Journal of Materials Chemistry, 2012, 22: 5460-5469. doi: 10.1039/c2jm15636a [17] HE M, JI J, LIU B, et al. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature[J]. Applied Surface Science, 2019, 473: 934-942. doi: 10.1016/j.apsusc.2018.12.212 [18] KIM S B, HONG S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst[J]. Applied Catalysis B:Environmental, 2002, 35(4): 305-315. doi: 10.1016/S0926-3373(01)00274-0 [19] PEI J, XU H, YI L. Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst[J]. Building and Environment, 2015, 84: 134-141. doi: 10.1016/j.buildenv.2014.11.002 [20] ZENG L, SONG W L, LI M H, et al. Catalytic oxidation of formaldehyde on surface of H-TiO2/ H-C-TiO2 without light illumination at room temperature[J]. Applied Catalysis B:Environmental, 2014, 147: 490-498. doi: 10.1016/j.apcatb.2013.09.013 [21] LI J, ZHANG P, WANG J, et al. Birnessite-type manganese oxide on granular activated carbon for formaldehyde removal at room temperature[J]. The Journal of Physical Chemistry C, 2016, 120: 24121-24129. doi: 10.1021/acs.jpcc.6b07217 [22] MATOS J, LAINE J, HERRMANN J M. Association of activated carbons of different origins with titania in the photocatalytic purification of water[J]. Carbon, 1999, 37(11): 1870-1872. doi: 10.1016/S0008-6223(99)00198-0 [23] OBEE T N, BROWN R T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene[J]. Environmental Science & Technology, 1995, 29(5): 1223-1231. [24] HAN Z N, CHANG V W, WANG X P, et al. Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts[J]. Chemical Engineering Journal, 2013, 218: 9-18. doi: 10.1016/j.cej.2012.12.025 [25] Test method for assessing the performance of gas-phase air cleaning media and devices for general ventilation—Part 1: Gas-phase air cleaning media: ISO10121-1-2014[S/OL]. The International Organization for Standardization, 2014. https://www.iso.org/standard/77498.html.