

う知库 nvironmental ledge Web			<mark>环境工程学报</mark> ^{Chinese} Journal of Environmental Engineering		第 17卷 Vol. 17,	第 3 INO.3	期 2023 年 3 月 Mar. 2023	
	(******	http://www.cjee.ac.cn	@	E-mail: cjee@rc	ees.ac.cn	(010)) 629	41074
回代發展	文章 [;] DOI	栏目:大气污染防 10.12030/j.cjee.202	治 209015	中图分类号	X511	文献标识码	А	

武强, 潘奕君, 裴晶晶. 黑色 TiO₂/活性炭的制备及其光催化净化甲醛性能[J]. 环境工程学报, 2023, 17(3): 841-849. [WU Qiang, PAN Yijun, PEI Jingjing. Preparation of black TiO₂ / activated carbon and its photocatalytic purification performance for formaldehyde[J]. Chinese Journal of Environmental Engineering, 2023, 17(3): 841-849.]

黑色 TiO₂/活性炭复合材料的制备及其光催化净 化甲醛性能

武强,潘奕君,裴晶晶∞

天津大学环境科学与工程学院,天津 300072

摘 要 甲醛是最受关注的室内气态污染物之一。传统甲醛吸附类净化材料存在寿命短、二次污染、废弃物难 处理等问题。以钛酸四丁酯为钛源,通过溶胶-凝胶法在氩气气氛下煅烧制备了黑色二氧化钛,采用TEM、 XRD、DRS、XPS等技术手段表征了材料的物理、化学、光学特性、并利用连续流表面式光催化反应系统测试 黑色 TiO, 的甲醛净化性能。结果表明,黑色 TiO, 存在表面无序层和氧空位等特征,并在紫外和可见光区域表 现出更高的吸光度和更窄的带隙,紫外光下的甲醛单通净化效率可达 78%。通过将活性炭与黑色 TiO2 复合,可 进一步提升材料的甲醛净化效率,并得到在不同流速下活性炭的最佳负载量。黑色 TiO,/活性炭与负载高锰酸钠 的活性氧化铝经过16h的长期性能测试对比,前者累计净化量是后者的1.5倍,且并未出现效率的衰减。本研 究可为光催化技术在室内甲醛净化领域的应用提供参考。

关键词 黑色二氧化钛;甲醛;光催化

甲醛是一种无色、有刺激性气味的气体,被国际癌症研究机构定义为一类致癌物质^[1]。甲醛污 染具有致癌风险大、污染源存在范围广^[2]、释放周期长^[3-4]等特点。调研表明,我国存在较普遍的 住宅甲醛超标现象^[5]。目前,针对甲醛的空气净化方案多以吸附技术为主。甲醛具有相对较高的蒸 汽压 (25 ℃ 时为 517 kPa) 和较低的沸点 (-19.5 ℃),因此吸附法对甲醛的净化效果远不如其他可挥 发性有机化合物 (volatile organic compounds, VOCs)^[6]。光催化技术的原理是利用一定波长的光线激 发半导体催化剂,原位产生羟基自由基等强氧化还原性物种参与化学反应,是一种安全、高效、 反应条件温和的绿色技术,在新能源合成和污染物降解领域具有广阔应用前景。

TiO2是研究最广泛的半导体光催化剂之一,具有较好的结构稳定性、储量丰富、无毒等特 点。但传统 TiO,由于量子效率低,在实际的室内空气净化过程中,存在催化剂易失活¹⁷ 和产生有 害中间副产物^[8]的问题。带隙调控是一种常见的改性思路,通过在晶格中掺杂金属或非金属元 素,提高可见光响应能力和光催化性能。但掺杂过程通常比较困难¹⁹¹,且掺杂元素可能会成为载流 子的复合中心^[10],有研究者通过引入氧空位来提高量子效率。CHEN等^[11]最早通过高压氢化得到 表面无序、带有氧空位的黑色 TiO,,其能出现带尾状态,表现出较好的可见光响应能力和催化性 能,同时研究了黑色 TiO,的合成和结构特征。

制备黑色 TiO, 的方法众多, 包括氢热处理、化学还原、电化学还原、金属还原等^[12]。常规的

收稿日期: 2022-09-03; 录用日期: 2023-01-05

基金项目: 天津市自然科学基金资助项目 (21JCYBJC00650)

第一作者:武强 (1998—),男,硕士研究生,2020214124@tju.edu.cn; 网通信作者: 裴晶晶 (1982—),女,博士,副教授, jpei@tju.edu.cn

黑色 TiO₂合成需要在高压、还原性气氛条件下进行,操作复杂且成本高。为简化合成方法, KATAL 等^[13] 直接在真空环境下退火合成黑色 TiO₂,并表现出与氢气煅烧相当的催化性能。本研究 将采用溶胶-凝胶法在氩气下煅烧得到黑色 TiO₂,通过 TEM、XRD、DRS、XPS 等技术表征其结构 特征,并测试其对甲醛的光催化净化效率。为进一步提高材料的表面传质效率,拟将黑色 TiO₂ 与 活性炭复合,探究吸附-催化协同降解机制。最后,在相同工况下对比黑色 TiO₂/活性炭复合结构与 传统净化材料的甲醛净化性能,为黑色 TiO₂/活性炭的长期甲醛净化效果提供参考。

1 材料与方法

1.1 实验原料

钛酸四丁酯 (C₁₆H₃₆O₄Ti) 购于上海麦克林生化科技有限公司;冰醋酸 (CH₃COOH)、无水乙醇 (CH₃CH₂OH)、盐酸 (HCl)、硝酸 (HNO₃) 均为分析纯并购于天津市元立化工有限公司;活性炭为椰 壳活性炭,购于长葛市炭尔诺催化技术有限公司;高锰酸钠浸渍活性氧化铝 (NaMnO₄@Al₂O₃) 购于 美国 Purafil 公司,高锰酸钠负载量为 12%。

1.2 材料制备

1) 黑色 TiO₂ 的制备。将 14 mL 无水乙醇与 13 mL 去离子水混合,以 1 mol·L⁻¹ 盐酸调节混合液 pH 至 2~3,制得 A 液。将 14 mL 的钛酸四丁酯、9 mL 冰醋酸、28 mL 无水乙醇溶液混合,搅拌均 匀,制得 B 液。在强力搅拌下,将 A 液以每秒 1 滴的速度加入到 B 液。滴加完毕后,恒温继续搅 拌 100 min,室温静置 12 h 凝胶,老化 24 h,于 105 ℃ 下干燥 24 h,研磨,分别在空气、氩气氛围 下以 15 ℃·min⁻¹ 先升温至 200 ℃,恒温 1 h,再以相同的速度升温至 500 ℃,恒温煅烧 2 h,分别得 到白色和黑色 TiO₂,记为 W-TiO₂和 B-TiO₂。

2) 黑色 TiO₂/活性炭复合材料制备。活性炭研磨后,用 0.25 mol·L⁻¹ 硝酸浸渍处理 1.5 h 后,用 蒸馏水清洗至中性。在上述 B 液中加入一定量活性炭,重复上述步骤,分别制得含有 3%、7%、10%、15%、25%、40% 质量分数活性炭的黑色 TiO₂,记为 B-TiO₂-3AC、B-TiO₂-7AC、B-TiO₂-10AC、B-TiO₂-15AC、B-TiO₂-25AC、B-TiO₂-40AC。

1.3 材料表征

使用日本 Rigaku Smartlab SE 型衍射仪,利用 Cu 靶以 2°·min⁻¹ 扫描 10°~80°,得到 X 射线衍射 图 (XRD)。采用透射电子显微镜 (TEM,日本 JEOL JEM 2100F)在纳米尺度下观察黑色 TiO₂的形貌 特征。扫描电子显微镜 (SEM,捷克 TESCAN MIRA LMS)用于观察活性炭与 TiO₂ 的复合结构特征。X 射线光电子能谱 (XPS,美国 Thermo Scientific K-Alpha)用于分析 TiO₂表层元素的化学状态,键能参考值为 C1s 284.8 eV。通过紫外-可见漫反射吸收光谱 (UV-Vis DRS, Hitachi U4150)得到光催 化剂在 200~800 nm 的吸光度,并通过 Tauc 曲线计算确定光催化剂的带隙宽度。采用电子顺磁共振 技术 (EPR,德国 Bruker EMXplus-6/1)获取未成对电子的运动状态,用于佐证氧空位的存在。

1.4 甲醛净化性能测试方法

甲醛净化性能测试在连续流单通式反应系统(图1)中进行。催化反应器主要由透过式的填充

块组成,150 mg 催化剂均匀负载在 5 cm×10 cm 的玻璃纤维滤纸表面,气流自上而下穿过 催化剂。催化剂上方设有石英玻璃透光窗, 主波长为 254 nm 的汞灯作为光源,功率为 9 W,紫外光强为 3 mW·cm⁻²。自制甲醛发生器 利用固体三聚甲醛粉末高温解聚的发生原 理。甲醛检测采用美国 Interscan 公司生产的 甲醛在线检测仪 (Interscan RM16),检测仪示 数根据酚试剂分光光度法校准。

压缩空气先经过干燥净化柱除去背景污染物并降湿,通过控制加湿罐流量调节湿 度,控制甲醛发生器流量调节甲醛浓度,质

量流量控制器调节流量。在实验过程中,甲醛检测仪先接通上游,待上游甲醛浓度稳定1h后,打 开紫外灯,检测仪接通下游,连续监测。每隔1min记录1次数据,待下游甲醛浓度稳定1h,取1 h平均值作为下游甲醛浓度。甲醛的单通净化效率根据式(1)计算。

$$\eta = \frac{C_i - C_o}{C_i} \times 100\%$$

式中: η 为甲醛单通净化效率,%; C_i 为反应器上游甲醛质量浓度,mg·m⁻³; C_o 为反应器下游甲醛 质量浓度,mg·m⁻³。

2 结果与讨论

2.1 催化剂表征

光催化剂的 XRD 图如图 2 所示。B-TiO₂与 W-TiO₂位于 2*θ*=25.3°、37.8°、48.1°、53.8°的衍射峰 揭示了锐钛矿的主要特征,与 JCPDS卡#21-1272 一致。图 2 中 W-TiO₂的衍射峰强度比 B-TiO₂强, 这表明 W-TiO₂的结晶度更好。而 B-TiO₂的半峰宽度更宽,则表明 B-TiO₂晶粒尺寸更小。根据 Scherrer 公式 (式 (2)),计算出 W-TiO₂的晶粒尺寸为 13.9 nm, B-TiO₂的晶粒尺寸为 10.8 nm。

$$D = \frac{k \lambda}{B \cos \theta}$$
(2)

式中:D为晶粒尺寸, nm; k为Scherrer常数; λ 为X射线波长, nm; B为衍射峰半高宽度, nm; θ 为布拉格角, (°)。

B-TiO₂的 TEM 图 如 图 3 所 示 。 黑 色 TiO₂纳米粒子尺寸分布均匀,晶粒内部晶格 条纹清晰均匀,这表明其内部有较好的结晶 度。通过计算得到晶格间隙为 0.35 nm。晶粒 边缘晶格条纹弯曲,形成黑色 TiO₂ 典型的结 晶核/无序壳结构。

为观察 B-TiO₂与活性炭的复合结构,通 过扫描电子显微镜获得 B-TiO₂-40AC、B-TiO₂-15AC、B-TiO₂-3AC的微观形貌(图 4)。a、b 为B-TiO₂-40AC,c、d为B-TiO₂-15AC,e、f为

图 2 黑色和白色 TiO₂ 的 XRD 图

Fig. 2 XRD patterns of black and white TiO₂

B-TiO₂-3AC。活性炭与 B-TiO₂的相对含量不同,导致活性炭表面的形貌有较大差别。图 4 (a) 表明 B-TiO₂-40AC 表面具有清晰可见的孔隙结构;图 4 (b) 表明部分纳米 TiO₂填充在活性炭的孔隙中。 随着活性炭含量的减少、纳米 TiO₂相对含量增加。图 4 (c) 表明活性炭孔隙明显变小,推测是纳米 TiO₂ 对孔隙的填充导致的。从放大图 4 (d) 中发现,纳米 TiO₂ 以薄膜的形式负载在活性炭表面。随 着活性炭含量继续减少,B-TiO₂-3AC 中纳米 TiO₂ 几乎完全覆盖了活性炭表面,观察不到活性炭表 面的孔隙结构 (图 4 (e)),放大图中可观察到活性炭表面出现大量纳米 TiO₂ 团聚形成的微球 (图 4 (f))。

因此,黑色纳米 TiO₂ 在活性炭表面的复合主要包括孔隙填充与表面覆盖 2 种形式, 当活性炭含量减少,黑色 TiO₂含量相对增加,可观察到活性炭孔隙逐渐减小,活性炭 表面逐渐被黑色二氧化钛覆盖。

B-TiO₂、W-TiO₂的紫外-可见漫反射吸收 光谱图如图 5 (a) 所示。B-TiO₂ 无论在紫外或 是可见光部分都有更强的光吸收能力。结合 TEM, B-TiO₂可见光吸收能力的增强可能得 益于表面黑色的无序壳结构。根据 Tauc 曲线 (图 5 (b))估算光催化剂的带隙, B-TiO₂的带 <u>20 nm</u>

 (a) B-TiO,的TEM图,放
 (b) B-TiO,的TEM图,放

 大倍数×500 000
 大倍数×3 000 000

(1)

(a)紫外-可见漫反射吸收光谱

图 5 B-TiO₂和W-TiO₂的紫外可见漫反射吸收光谱和 Tauc 曲线

Fig. 5 UV-Vis diffuse reflection spectra and Tauc's plots of $B-TiO_2$ and $W-TiO_2$

隙为 2.44 eV,相比于 W-TiO₂的 3.23 eV 明显 减小,这表明其对可见光有一定的响应能力。 为证明 B-TiO₂中氧空位的存在,利用 EPR 技术对比 W-TiO₂与 B-TiO₂的未成对电子 运动状态,结果如图 6 所示。在 g=2.003 处可 明显观察到 B-TiO₂的信号强度明显高于 W-TiO₂,这主要归因于 B-TiO₂表面氧空位的存 在^[14]。

波长/nm

为确定 W-TiO₂、B-TiO₂中 Ti和O元素的 化学状态,对Ti和O元素的 XPS 精细谱进行 了分峰拟合,结果如图 7 所示。在 Ti2p 轨道 (图 7 (a))上,W-TiO₂分别在 458.68 eV (Ti

hv/eV

(b) Tauc曲线

Fig. 7 XPS spectra of W-TiO₂ and B-TiO₂

2p_{3/2})和464.35 eV (Ti 2p_{1/2})有一个单强峰和弱肩峰,这是TiO₂中Ti—O—Ti 键的结构特征,对应于Ti⁴⁺。氩气下煅烧得到的B-TiO₂中Ti2p轨道的电子结合能分别增加到459.01 eV (Ti 2p_{3/2})和464.67 eV (Ti 2p_{1/2}),电子结合能的增大归因于缺氧环境下氧空位和Ti³⁺的形成^[15]。

图 7 (b) 为 O1s 轨道, 2 种催化剂在 530 eV 和 532 eV 处分别出现了晶格氧和吸附态氧的特征 峰。W-TiO₂ 晶格氧特征峰出现在 529.88 eV。由于氧空位的存在, B-TiO₂ 的晶格氧特征峰发生偏 移,增加到 530.24 eV。在 532.1 eV 附近拟合出的弱肩峰为吸附态氧的特征峰^[16],根据元素定量, B-TiO₂ 中吸附态氧的比例大于 W-TiO₂。这是由于氧空位的存在能促进空气中的氧转化为 TiO₂ 表面 的吸附态氧^[15-17],也进一步证明了氧空位的存在。

2.2 光催化净化甲醛性能测试

2.2.1 不同光催化材料性能对比

B-TiO₂、W-TiO₂、B-TiO₂·10AC 在不同浓度下的甲醛单通净化效率对比如图 8 (a) 所示。考虑到 室内实际甲醛污染水平,发生浓度选择国标规定的室内甲醛浓度限值的 10 倍左右数量级 (0.5~ 2.5 mg·m⁻³),湿度控制在 (50±2)%。在低浓度范围内,甲醛净化效率随浓度变化不明显。B-TiO₂的 甲醛净化效率在 78% 左右,相比于 W-TiO₂,甲醛净化效率提高了约 16%。掺杂 10% 活性炭后,B-TiO₂ 的净化效率提高了约 5%。

图 8 3 种材料在不同浓度下甲醛净化效率

Fig. 8 Formaldehyde purification efficiency of three materials at different concentrations

通过不同浓度下获得的实验数据,可用于研究催化反应动力学,即可深入认识催化反应的反应机理,又可为实际催化反应装置的设计提供参考。Langmuir-Hinshelwood (L-H)反应动力学模型 (式 (3)) 被广泛用于解释气固相催化反应动力学机理^[18-19]。在污染物浓度较低时,L-H模型可近似为准一级反应模型(式 (4)),即反应速率 *r* 与催化剂表面浓度 *C_s* 成正比。根据不同浓度下的降解效率拟合出的一级反应动力学平衡常数 *k*′,如图 8 (b) 所示,B-TiO₂ 的 *k*′值为 0.89,明显高于 W-TiO₂,拟合度 *R*² 均大于 0.99。

$$r = \frac{kKC_s}{1 + KC_s} \tag{3}$$
$$r = k'C_s \tag{4}$$

式中:r为甲醛降解速率, $mg\cdot m^{-3}\cdot min^{-1}$;k为 L-H 反应平衡常数, $mg\cdot m^{-3}\cdot min^{-1}$;k'为一级反应动力 学平衡常数, min^{-1} ;K为吸附平衡常数 $mg^{-1}\cdot m^3$, C_s 为催化剂表面甲醛质量浓度, $mg\cdot m^{-3}$ 。

B-TiO₂相比于 W-TiO₂表现出更高的光催化活性,结合表征与相关研究,其增强作用主要归因 于以下几点。首先,B-TiO₂对于紫外光的吸收率增加;其次,氧空位处于富电子的化学还原态, 能降低氧分子的化学吸附能,促进空气中的氧分子转化为吸附态氧,XPS 结果 (图 7 (b))也表明 B-TiO₂表面吸附态氧含量增加,氧空位将电子转移到吸附态氧,并进一步转化为活性氧^[20],从而加 快甲醛的光催化降解速率。

2.2.2 活性炭负载的影响

在紫外线照射下,不同活性炭比例的B-TiO₂ 光催化降解甲醛效率如图 9 所示。当活 性炭负载量小于 10% 时,甲醛净化效率随活 性炭负载量增加而增大。这是由于活性炭的 掺杂,一方面提高了催化剂的分散性和稳定 性^[21],防止催化剂团聚;另一方面,由于浓 度边界层的存在 (图 10),污染物从气流主体 扩散到 TiO₂表面存在传质阻力,而在活性炭 与 TiO₂的界面处,原本吸附在活性炭表面的 污染物分子会由于浓度梯度和吸附力而转移 到 TiO₂表面。这种活性炭吸附-界面转移-光催 化反应的降解速率要高于普通的吸附催化速 率,从而整体上提高光催化反应速率^[22]。随 着活性炭负载比例继续增加,催化活性位点

相对减少,甲醛净化效率明显降低。因此, 活性炭掺杂存在一个最佳比例。气流速度为 1 L·min⁻¹时的最佳负载量为10%,气流速度为 2 L·min⁻¹时的最佳负载量为15%。最佳负载量 随着流速的增加而增加。这是由于最佳活性 炭比例实质上是传质和催化2个反应步骤影 响因素耦合的结果,活性炭因具有更大的比 表面积和发达的孔隙结构而具有更好的吸附 "浓缩"效果。当流速从1 L·min⁻¹增加到2 L·min⁻¹,污染物的停留时间缩短,需要更多

图 9 不同活性炭含量的 B-TiO₂ 甲醛净化效率对比

的活性炭来有效捕集污染物,故最佳活性炭负载量增加。

综上所述,适量活性炭与黑色 TiO₂复合能提高甲醛净化效率,且这种催化-吸附协同净化能在 一定程度上解决甲醛在催化剂表面停留时间短的问题。 第3期

2.2.3 湿度的影响

水分子对于光催化的影响较为复杂,与 催化剂表面的结构特点及被降解的化合物结 构都有关系,因此,针对不同的催化剂及测 试系统,验证湿度对催化效率的影响是十分 必要的。本实验在5种相对湿度条件下,测 试 W-TiO₂、B-TiO₂和 B-TiO₂-10AC的甲醛净 化效率,实验结果如图11所示。随着相对湿 度从 20% 升至 90%,W-TiO₂、B-TiO₂和 B-TiO₂-10AC的甲醛的净化效率随湿度变化不明 显,但总体来看,甲醛净化效率表现出上升 的趋势。湿度从 20% 提高到 90%,W-TiO2、 B-TiO2 和 B-TiO2-10AC 的甲醛净化效率分别 提高了 4%、3.1% 和 3.6%。

湿度通常被认为是影响光催化氧化速率

图 II W-IIO2、 B-IIO2、 B-IIO2-IIAC 的中華净化效率 随湿度变化图

的关键因素。一方面,羟基自由基作为光催化过程中的主要活性氧物种之一,是通过水分子与带 正电的空穴反应得到的,故水分子的存在有利于合成更多的羟基自由基,从而加快催化反应速 率;另一方面,水分子可能与污染物分子存在竞争吸附,从而抑制光催化反应速率^[23],故湿度对 于光催化反应速率的影响是双重的。在本研究中,甲醛分子质量浓度约为1.2 mg·m⁻³,水分子浓度 为4000~16 000 mg·m⁻³,两者的浓度相差3个数量级以上,因此两者竞争吸附的影响几乎可以忽 略。在整体上,湿度的增加表现为对甲醛光催化降解速率的促进。该结果与HAN等^[24]在低浓度污 染物下,湿度对光催化速率影响的结论一致。

2.2.4 催化与吸附材料长期净化性能对比

吸附和催化净化材料在实际应用中都存在失活的问题。为对比两类净化材料对于甲醛的长期 净化性能,本研究采用一般吸附材料常用的容污量指标^[25],将所研发的光催化材料与针对甲醛净 化的吸附型材料在相同工况下进行对比。容污量是指净化材料效率衰减到一定程度时的累计净化 量,该值受污染物浓度和空速等因素影响^[6]。将 B-TiO₂-15AC 与椰壳活性炭、高锰酸钠浸渍活性氧 化铝 3 种材料在相同工况下进行长期性能测试。测试条件尽量接近实际室内环境工况:甲醛浓度 1.2 mg·m⁻³,质量空速 MHSV=800 L·g⁻¹·h⁻¹,紫外光强 (3 000±50) µW·cm⁻²,温度 (25±0.5) ℃,湿度 (50±2) %。

3种净化材料的效率与容污量随时间的变化趋势如图 12 所示。普通椰壳活性炭在 2 h 内效率

图 12 B-TiO₂-15AC 与活性炭、NaMnO₄@Al₂O₃的效率与容污量随时间的变化

Fig. 12 The efficiency and capacity of B-TiO₂-15AC, AC and NaMnO₄@Al₂O₃ change with time

从 70% 衰减到 10% 以下,单位质量容污量为 4.3 mg·g⁻¹。经过 16 h, NaMnO₄@Al₂O₃ 的净化效率从 76% 衰减至 25%,单位质量容污量为 96 mg·g⁻¹。B-TiO₂-15AC 的效率一直保持在 83%,没有出现明 显衰减,16 h 的单位质量容污量为 147 mg·g⁻¹。结果表明,B-TiO₂-15AC 催化剂在长期净化性能表 现显著优于高锰酸钠浸渍活性氧化铝,普通活性炭吸附对甲醛净化效果较差。

3 结论

1) 在常压、氩气气氛下制备了锐钛矿相黑色 TiO₂。黑色 TiO₂ 比白色 TiO₂ 的甲醛单通净化效率 提升了 16%,一级反应动力学常数提高了 0.11。根据材料表征与相关研究推断,净化效率的提升归 因于黑色 TiO₂ 对紫外线具有更强的吸收能力,同时氧空位的存在促进了氧分子的吸附与活化。因 此,氩气气氛下煅烧得到的黑色 TiO₂ 对于室内甲醛气体有良好的净化效果。

2) 在掺杂活性炭后, B-TiO₂-AC 表现出催化吸附协同净化效果。活性炭的存在帮助 TiO₂ 催化剂的分散及污染物分子向催化剂表面的转移,但催化活性位点数减少,存在最佳活性炭负载量。 气流速度为1 L·min⁻¹时的最佳负载量为 10%,气流速度为 2 L·min⁻¹时的最佳负载量为 15%。因此,活性炭的掺入可解决 B-TiO₂ 因停留时间短而净化效率衰减的问题。

3) 在相同工况下对比了 B-TiO₂-15AC 和吸附类净化材料对于甲醛的长期净化性能。在 16 h 内,B-TiO₂-15AC 效率维持在 83%,而高锰酸钠浸渍活性氧化铝效率从 76% 衰减到 25%,B-TiO₂-15AC 的容污量是高锰酸钠浸渍活性氧化铝的 1.5 倍。因此,对于室内甲醛净化,光催化相比于吸 附技术在材料性能方面有很大优势。但光催化产品的结构形式、与传统 HVAC 系统如何匹配等问 题仍有待优化,并需要经过综合效益的评估,才能更好地应用于空气净化产品。

参 考 文 献

- International Agency for Research on Cancer. FORMALDEHYDE [EB/OL]. [2022-07-01]. https://monographs.iarc.who.int/wp-content/ uploads/2018/06/mono100F-29.pdf,2018.
- [2] TANG X, BAI Y, DUONG A, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment international, 2009, 36(8): 1210-1224.
- [3] SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110(4): 2536-2572.
- [4] LIU X, YAN M, DUAN H. Characteristics of indoor volatile organic compounds in urban residential microenvironments in China[J]. Research of Environmental Sciences, 2012, 25(10): 1077-1084.
- [5] ZHUANG X, HU X, LU X, et al. Analysis on the pollution characteristics of formaldehyde and alkyl benzenes in indoor air[J]. China Safety Science Journal, 2008, 18(5).
- [6] ZHANG X, GAO B, CREAMER A, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102-123.
- [7] CAO L X, GAO Z, SUIB S L, et al. Photocatalytic oxidation of toluene on nanoscale TiO₂ catalysts: Studies of deactivation and regeneration[J]. Journal of Catalysis, 2000, 196: 253-261.
- [8] HODGSON A T, DESTAILLATS H, SULLIVAN D P, et al. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications[J]. Indoor Air, 2007, 17(4): 305-316.
- [9] LIN T, YANG C, WANG Z, et al. Effective nonmetal incorporation in black titania with enhanced solar energy utilization[J]. Energy & Environmental Science, 2014, 7(3): 967.
- [10] CHOI W, TERMIN A, HOFFMANN M R. The role of metal ion dopants in quantum-sized TiO₂: Correlation between photoreactivity and

charge carrier recombination dynamics[J]. Journal of Physical Chemistry, 1994, 98(51): 13669-13679.

- [11] CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750.
- [12] ANDRONIC L, ENESCA A. Black TiO₂ synthesis by chemical reduction methods for photocatalysis applications[J]. Frontiers in Chemistry, 2020, 8: 565489.
- [13] KATAL R, SALEHI M, FARAHANI M, et al. Preparation of a new type of black TiO₂ under a vacuum atmosphere for sunlight photocatalysis[J]. ACS Applied Materials & Interfaces, 2018, 10(41).
- [14] DONG J, HAN J, LIU Y, et al. Defective black TiO₂ synthesized via anodization for visible-light photocatalysis[J]. Acs Applied Materials & Interfaces, 2014, 6(3): 1385-1388.
- [15] WEI Z, WANG W, LI W, et al. Steering electron –hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance[J]. Angewandte Chemie-International Edition, 2021, 60: 8236-8242.
- [16] ABDULLA-AL-MAMUN M, KUSUMOTO Y, SHARIFUL ISLAM M, et al. Enhanced photocatalytic cytotoxic activity of Ag @ Fe-doped TiO₂ nanocomposites against human epithelial carcinoma cells[J]. Journal of Materials Chemistry, 2012, 22: 5460-5469.
- [17] HE M, JI J, LIU B, et al. Reduced TiO₂ with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature[J]. Applied Surface Science, 2019, 473: 934-942.
- [18] KIM S B, HONG S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO₂ photocatalyst[J]. Applied Catalysis B:Environmental, 2002, 35(4): 305-315.
- [19] PEI J, XU H, YI L. Performance and kinetics of catalytic oxidation of

formaldehyde over copper manganese oxide catalyst[J]. Building and Environment, 2015, 84: 134-141.

- [20] ZENG L, SONG W L, LI M H, et al. Catalytic oxidation of formaldehyde on surface of H-TiO₂/ H-C-TiO₂ without light illumination at room temperature[J]. Applied Catalysis B:Environmental, 2014, 147: 490-498.
- [21] LI J, ZHANG P, WANG J, et al. Birnessite-type manganese oxide on granular activated carbon for formaldehyde removal at room temperature[J]. The Journal of Physical Chemistry C, 2016, 120: 24121-24129.
- [22] MATOS J, LAINE J, HERRMANN J M. Association of activated carbons of different origins with titania in the photocatalytic purification of water[J]. Carbon, 1999, 37(11): 1870-1872.

(责任编辑: 靳炜)

- [23] OBEE T N, BROWN R T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and *I*, 3-butadiene[J]. Environmental Science & Technology, 1995, 29(5): 1223-1231.
- [24] HAN Z N, CHANG V W, WANG X P, et al. Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts[J]. Chemical Engineering Journal, 2013, 218: 9-18.
- [25] Test method for assessing the performance of gas-phase air cleaning media and devices for general ventilation —Part 1: Gas-phase air cleaning media: ISO10121-1-2014[S/OL]. The International Organization for Standardization, 2014. https://www.iso.org/standard/ 77498.html.

Preparation of black TiO₂ / activated carbon and its photocatalytic purification performance for formaldehyde

WU Qiang, PAN Yijun, PEI Jingjing*

School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

*Corresponding author, E-mail: jpei@tju.edu.cn

Abstract Formaldehyde is one of the most widely concerned indoor gaseous pollutants. Traditional adsorption-based purification materials have the problems of short life-time, potential of secondary pollution and difficulty of waste disposal. In this study, black titanium dioxide was prepared by sol-gel calcination with tetrabutyl titanate as titanium source under argon atmosphere. The physical, chemical and optical properties of the prepared materials were characterized by TEM, XRD, DRS and XPS. Its formaldehyde purification performance was tested by continuous flow surface photocatalytic reaction system. The results show that black TiO₂ has the characteristics of disordered surface layer and oxygen vacancy, and exhibits higher visible light absorbance and narrower band gap. Its single-pass purification efficiency of formaldehyde purification efficiency was further improved, and the optimal load of activated carbon at different flow rates were obtained. The long-term performance of black TiO₂ / activated carbon and activated alumina loaded with potassium permanganate was compared for 16 hours, and the results show that the cumulative purification capacity of the former is 1.5 times that of the latter, and there is no efficiency decay. This study provides reference and comparison on material level for the application of photocatalytic technology in indoor formaldehyde purification.

Keywords black TiO₂; formaldehyde; photocatalysis