-
砷(As, arsenic)在自然界中广泛存在,是一种对环境和生物有毒的元素。环境中的砷主要来源于自然过程和人为活动,如岩石风化、化石燃料燃烧、含砷农药的使用等。长期暴露在砷污染环境中,可能会诱发癌症、皮肤病、神经问题等疾病。环境中的砷主要为无机砷和有机砷,价态分为三价和五价,而天然水体中的砷通常以As(Ⅲ)的无机砷形态存在。由于As(Ⅲ)比 As(Ⅴ)更具有毒性、可溶性和流动性[1],As(Ⅲ)的去除受到国内外的广泛关注。目前,常用的除砷方法有吸附法、混凝沉淀法、离子交换法、膜分离法[2]。其中,吸附法因其操作简单、去除效果好而被广泛应用于环境中砷的去除。常用的吸附剂有铁氧化物、氢氧化物、锰氧化物及粘土矿物等[3]。铁和锰的化学性质密切相关,在环境中往往以铁锰二元氧化物的形式存在,常用于去除水体中的砷[4,5]。这是由于铁氧化物具有表面电荷高、比表面积大、吸附能力强等优点[6],而锰氧化物则可以将毒性高且不易被去除的As(Ⅲ)转化为低毒性的As(Ⅴ),从而提高对砷的去除效率。LAKSHMIPATHIRAJ等[4]制备了一种铁锰化合物MnFeOOH,可以将水中的As(Ⅲ)氧化为As(Ⅴ),然后As(Ⅴ)通过铁锰化合物吸附去除。CHAKRAVARTY等[7]采用天然存在的廉价铁锰矿石来处理含砷废水,可通过吸附作用将地下水中砷质量浓度降至0.02 μg·L−1以下。然而,天然铁锰矿对砷的吸附性能存在一定的局限性,采用物理或化学方法对天然锰矿进行改性,可增强其表面活性,提高其吸附能力。水合肼作为一种良好的还原剂,在酸性介质中可以对天然铁锰矿进行还原溶解作用,将天然铁锰矿表面的杂质物质溶出。而加入的高锰酸钾溶液可将Mn2+氧化成高价态锰,使得天然铁锰矿具有高活性表面,以提高天然铁锰矿的界面吸附能力。马子川等[8]采用水合肼对天然锰矿进行改性,极大提高了天然锰矿对重金属离子的吸附能力。但针对不同铁含量的天然锰矿水合肼的改性效果及其除砷机制的研究尚少见报道。为此,本研究以含有不同铁锰比例的天然锰矿为材料,探讨了水合肼改性铁锰含量不同的天然锰矿对砷的吸附性能及影响因素,并结合X射线衍射(XRD, X-ray diffraction)、傅立叶变换红外光谱(FTIR, Fourier-transform infrared spectroscopy)、X射线光电子能谱(XPS, X-ray photoelectron spectroscopy)等表征手段,分析吸附砷前后以及反应过程中可能的吸附氧化机制,以期为天然铁锰矿的应用与砷污染的治理提供参考。
不同铁锰比例天然锰矿的改性及对As(III)吸附和氧化的行为与机制
Adsorption/oxidation behavior and mechanism of As(III) by modified natural manganese ores with different Fe/Mn ratios
-
摘要: 砷污染地下水和废水严重影响人体健康和生态环境,开发新型砷污染水体的修复材料具有重要意义。含铁锰矿来源广,具有较高的砷吸附容量和氧化特性,常用于吸附去除水体砷污染。但是,天然铁锰矿成分复杂,杂质含量多,对砷的吸附容量小,通常需要改性以提高其除砷性能。以不同铁锰含量比例的天然锰矿为材料,研究了水合肼改性法提高天然铁锰矿砷吸附容量的效果,采用批处理法研究了影响改性铁锰矿吸附砷的过程和影响因子,并结合XPS和FTIR等光谱学手段探究改性天然铁锰矿对As(III)的去除机制。结果表明,两种不同铁锰比例的改性天然铁锰矿对砷的吸附容量分别为30.9 mg·g−1和12 mg·g−1,远高于未改性的材料。改性后的材料对As(III)的吸附过程符合二级动力学模型,等温吸附曲线符合Freundlich模型。影响因子结果表明,共存离子PO43−、SiO32−、CO32−对不同铁锰比改性材料去除As(III)均有抑制作用。4种材料的pHpzc均小于6。pH为1~9时,2种改性含铁锰矿As去除率在94%以上,而pH>9时,材料对砷的去除率显著降低。FT-IR分析发现,改性后材料的H—O—H和Mn—O特征峰增宽增强,谱线变得平滑,表明改性后材料表面部分杂质被溶解去除,暴露出更多的活性位点。XPS分析发现,改性后材料吸附As(III)后低价态锰含量增加,而Fe2+、Fe3+所占百分含量变化不大,说明不同铁锰比改性材料在吸附As(III)过程中Mn将As(III)氧化为As(V),Fe主要参与吸附反应。以上研究结果可为水体砷污染修复技术的开发提供参考。Abstract: Arsenic-contaminated groundwater and wastewater seriously affect human health and ecological environment, and it is important to develop new remediation materials for arsenic-contaminated water bodies. Ferromanganese ore has a wide source, high arsenic adsorption capacity and oxidation characteristics, and is commonly used to adsorb and remove arsenic pollution from water bodies. However, natural ferromanganese ores have complex compositions, high impurity content and low adsorption capacity for arsenic, and usually need to be modified to improve their arsenic removal performance. In this study, natural manganese ores with different iron and manganese content ratios were used as materials to investigate the effect of hydrazine hydrate modification on arsenic adsorption capacity of natural ferromanganese ores. The process and influencing factors affecting arsenic adsorption of modified ferromanganese ores were studied by batch processing method, and the related removal mechanism of As (III) was explored by XPS, FTIR and other spectroscopic means. The results showed that the arsenic adsorption capacities of two modified natural ferromanganese ores with different Fe/Mn ratios were 30.9 mg·g−1 and 12 mg·g−1, respectively, which were much higher than those of the unmodified materials. The adsorption process of As (III) by the modified material conformed to the second-order kinetic model, and the isothermal adsorption curves were in accordance with the Freundlich model. The experimental results of influence factors showed that the coexisting ions of PO43−, SiO32− and CO32− all inhibited As (III) removal by the modified materials with different iron manganese ratios. The pHpzc of all the four materials were lower than 6, and the As removal rates of the two modified materials were above 94% at pH 1~9, while decreased significantly at pH>9. FT-IR analysis showed that the H—O—H and Mn—O characteristic peaks of the modified materials were broadened and enhanced, and the spectral lines became smooth, indicating that some impurities on the surface of the modified materials were dissolved and removed, and more active sites were exposed. XPS analysis revealed that the content of low-valent manganese increased after the adsorption of As(III) by the modified materials, and a slight change occurred on the percentage content of Fe2+ and Fe3+, indicating that Mn oxidized As(III) to As(V) during the adsorption of As(III) by different Fe/Mn ratio materials, and Fe mainly participated in the adsorption reaction. In this study, new arsenic pollution remediation materials were developed and their mechanisms were clarified to provide scientific basis for the development of arsenic pollution remediation technology in water bodies.
-
Key words:
- modification /
- natural iron manganese ore /
- arsenic /
- adsorption /
- oxidation
-
表 1 供试材料的组成成分及电荷零点pHPZC
Table 1. Composition and pHPZC of the tested materials
材料 部分组成成分/% pHPZC Fe Mn K Ca Zn Cu As NFM-I 6.640 25.500 0.634 0.679 0.068 0.003 0.000 5.58 MNFM-I 6.490 27.400 0.214 0.092 0.012 0.000 0.000 2.18 NFM-II 0.862 44.500 0.000 0.132 0.000 0.000 0.000 3.72 MNFM-II 0.452 45.800 0.126 0.129 0.000 0.000 0.000 2.76 表 2 材料吸附As(Ⅲ)的Langmuir和Freundlich模型参数
Table 2. Langmuir and Freundlich model parameters of As(Ⅲ) adsorption by four materials
材料 Langmuir模型 Freundlich 模型 qm b R2 Kf n R2 NFM-I 4.89 0.080 0 0.854 1.23 0.385 0.798 MNFM-Ⅰ 30.9 0.034 4 0.898 2.62 0.487 0.959 NFM-II 3.81 0.007 06 0.455 0.051 1 0.743 0.957 MNFM-Ⅱ 12.0 0.054 5 0.963 1.37 0.451 0.936 表 3 不同材料对As(III)的吸附能力比较
Table 3. Comparison of As(III) adsorption capacities of different materials
-
[1] WEERASUNDARA L, OK Y S, BUNDSCHUH J. Selective removal of arsenic in water: A critical review[J]. Environmental Pollution, 2021, 268: 115668. doi: 10.1016/j.envpol.2020.115668 [2] RATHI B S, KUMAR P S. A review on sources, identification and treatment strategies for the removal of toxic arsenic from water system[J]. Journal of Hazardous Materials, 2021, 418(1): 126299. [3] LI M, KUANG S, KANG Y, et al. Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment[J]. Science of the Total Environment, 2022, 819: 153157. doi: 10.1016/j.scitotenv.2022.153157 [4] LAKSHMIPATHIRAJ P, NARASIMHAN B, PRABHAKAR S, et al. Adsorption studies of arsenic on Mn-substituted iron oxyhydroxide[J]. Journal of Colloid & Interface Science, 2006, 304(2): 317-322. [5] YU L, LIU H, LIU C, et al. Magnetically–confined Fe–Mn bimetallic oxide encapsulation as an efficient and recoverable adsorbent for arsenic (III) Removal[J]. Particle & Particle Systems Characterization, 2016, 33(6): 323-331. [6] GUPTA A D, RENE E R, GIRI B S, et al. Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106376. doi: 10.1016/j.jece.2021.106376 [7] CHAKRAVARTY S, DUREJA V, BHATTACHARYYA G, et al. Removal of arsenic from groundwater using low cost ferruginous manganese ore[J]. Water Research, 2002, 36(3): 625-32. doi: 10.1016/S0043-1354(01)00234-2 [8] 马子川, 王颖莉, 贾密英, 等. 提高天然锰矿吸附水中重金属离子能力的方法[J]. 金属矿山, 2006, 41(9): 78-80. doi: 10.3321/j.issn:1001-1250.2006.09.022 [9] 陆泗进, 谭文峰, 刘凡, 冯雄汉. 一种改进的盐滴定法测定氧化锰矿物的电荷零点[J]. 土壤学报, 2006, 43(5): 756-763. doi: 10.3321/j.issn:0564-3929.2006.05.008 [10] WEN Z, ZHANG Y, DAI C, et al. Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions[J]. Microporous and Mesoporous Materials, 2014, 200: 235-244. doi: 10.1016/j.micromeso.2014.08.049 [11] ZHANG Y, YANG M, DOU X, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties.[J]. Environmental Science & Technology, 2005, 39(18): 7246-7253. [12] HOU J, LUO J, SONG S, et al. The remarkable effect of the coexisting arsenite and arsenate species ratios on arsenic removal by manganese oxide[J]. Chemical Engineering Journal, 2017, 315: 159-166. doi: 10.1016/j.cej.2016.12.115 [13] YU M, WANG Y, KONG S, et al. Adsorption kinetic properties of As(III) on synthetic nano Fe-Mn binary oxides[J]. Journal of Earth Science, 2016, 27(4): 699-706. doi: 10.1007/s12583-016-0714-4 [14] GALAL-GORCHEV H, OZOLINS G. WHO guidelines for drinking-water quality[J]. Water Supply, 1993, 11(3): 1-16. [15] WANG J, GUO X. Adsorption kinetic models: Physical meanings, applications, and solving methods[J]. Journal of Hazardous materials, 2020, 390: 122156. doi: 10.1016/j.jhazmat.2020.122156 [16] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465. doi: 10.1016/S0032-9592(98)00112-5 [17] GUO H, STÜBEN D, BERNER Z. Removal of arsenic from aqueous solution by natural siderite and hematite[J]. Applied Geochemistry, 2007, 22(5): 1039-1051. doi: 10.1016/j.apgeochem.2007.01.004 [18] SHI Y J, HUANG R L, HUANG Y H. Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite[J]. Journal of Cleaner Production, 2015, 87: 897-905. doi: 10.1016/j.jclepro.2014.10.065 [19] LIU Z, CHEN J, WU Y, et al. Synthesis of magnetic orderly mesoporous α-Fe2O3 nanocluster derived from MIL-100 (Fe) for rapid and efficient arsenic (III, V) removal[J]. Journal of Hazardous Materials, 2018, 343: 304-314. doi: 10.1016/j.jhazmat.2017.09.047 [20] MA L, CAI D, TU S. Arsenite simultaneous sorption and oxidation by natural ferruginous manganese ores with various ratios of Mn/Fe[J]. Chemical Engineering Journal, 2020, 382: 123040. doi: 10.1016/j.cej.2019.123040 [21] JAIN C K, ALI I. Arsenic: occurrence, toxicity and speciation techniques[J]. Water Research, 2000, 34(17): 4304-4312. doi: 10.1016/S0043-1354(00)00182-2 [22] CHAO S, TONG M. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide[J]. Water Research, 2013, 47(10): 3411-3421. doi: 10.1016/j.watres.2013.03.035 [23] QI J, ZHANG G, LI H. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead[J]. Bioresource Technology, 2015, 193: 243-249. doi: 10.1016/j.biortech.2015.06.102 [24] LEI M, QIN P, PENG L, et al. Using Fe–Mn binary oxide three-dimensional nanostructure to remove arsenic from aqueous systems[J]. Water Science and Technology:Water Supply, 2016, 16(2): 516-524. doi: 10.2166/ws.2015.163 [25] RYU S R, JEON E K, YANG J S, et al. Adsorption of As(III) and As(V) in groundwater by Fe–Mn binary oxide-impregnated granular activated carbon (IMIGAC)[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 62-69. doi: 10.1016/j.jtice.2017.01.004 [26] ZHI B, DING H, WANG D, et al. Ordered mesoporous MnO2 as a synergetic adsorbent for effective arsenic(III) removal[J]. Journal of Materials Chemistry A, 2014, 2(7): 2374-2382. doi: 10.1039/c3ta13790b [27] LIN L, QIU W, WANG D, et al. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism[J]. Ecotoxicology and Environmental Safety, 2017, 144: 514-521. doi: 10.1016/j.ecoenv.2017.06.063 [28] RAJU N J. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 2022, 203: 111782. doi: 10.1016/j.envres.2021.111782 [29] ZHANG S, NIU H, CAI Y, et al. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4[J]. Chemical Engineering Journal, 2010, 158(3): 599-607. doi: 10.1016/j.cej.2010.02.013 [30] ZHANG G, LIU H, LIU R, et al. Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface[J]. Journal of Hazardous Materials, 2009, 168(2/3): 820-825. [31] STRAUSS R, BRÜMMER G W, BARROW N J. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate[J]. European Journal of Soil Science, 1997, 48(1): 101-114. doi: 10.1111/j.1365-2389.1997.tb00189.x [32] ZHENG Q, TU S, HOU J, et al. Insights into the underlying mechanisms of stability working for As (III) removal by Fe-Mn binary oxide as a highly efficient adsorbent[J]. Water Research, 2021, 203: 117558. doi: 10.1016/j.watres.2021.117558 [33] APPELO C A J, VAN DER WEIDEN M J J, TOURNASSAT C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science & Technology, 2002, 36(14): 3096. [34] CHEN W R, HUANG C H. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides[J]. Journal of Hazardous Materials, 2012, 227-228: 378-385. doi: 10.1016/j.jhazmat.2012.05.078 [35] JUN J W, TONG M, JUNG B K, et al. Effect of central metal ions of analogous metal–organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification[J]. Chemistry-A European Journal, 2015, 21(1): 347-354. doi: 10.1002/chem.201404658 [36] LIU B, YANG F, ZOU Y, et al. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: effect of hydrogen bonding[J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1476-1482. [37] ZHENG Q, HOU J, HARTLEY W, et al. As (III) adsorption on Fe-Mn binary oxides: are Fe and Mn oxides synergistic or antagonistic for arsenic removal?[J]. Chemical Engineering Journal, 2020, 389: 124470. doi: 10.1016/j.cej.2020.124470 [38] JOSHI T P, ZHANG G, JEFFERSON W A, et al. Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism[J]. Chemical Engineering Journal, 2017, 309: 577-587. doi: 10.1016/j.cej.2016.10.084 [39] YU X, WEI Y, LIU C, et al. Ultrafast and deep removal of arsenic in high-concentration wastewater: A superior bulk adsorbent of porous Fe2O3 nanocubes-impregnated graphene aerogel[J]. Chemosphere, 2019, 222: 258-266. doi: 10.1016/j.chemosphere.2019.01.130 [40] WANG H, WANG Y N, SUN Y, et al. A microscopic and spectroscopic study of rapid antimonite sequestration by a poorly crystalline phyllomanganate: differences from passivated arsenite oxidation[J]. RSC Advances. 2017, 7(61): 38377-38386.